por Cleyson007 » Ter Set 25, 2012 16:17
Ache uma equação da reta tangente à curva y = 2x² + 3 que é paralela à reta 8x - y + 3 = 0.Bom, sei que a equação da reta tangente à curva é obtida por:

Resolvendo, encontro: f ' = 4x.
Para que a reta tangente seja paralela terá que ter o mesmo coeficiente angular. Correto?
Como prosseguir?
No aguardo.
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por young_jedi » Ter Set 25, 2012 16:30
reescrenvo a equação da reta

sendo assimo coeficiente angular é igual a 8
então

encontrando x voce encontra o ponto em que a reta paralela é tangente a cruva dai para encontrar o resto da equação é so substituição.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Russman » Ter Set 25, 2012 21:21
Uma reta tangente a curva

no ponto

tem incinação

.
Se você procura uma reta tangente a curva

que seja paralela a reta

então esta deve ter inclinação igual a

, pois esta é a inclinação dessa reta.
Assim,

e , portanto,

.
Logo a reta tangente a curva

é da forma

tal que
A reta procurada é

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- equação reta tangente
por ezidia51 » Dom Ago 26, 2018 17:03
- 3 Respostas
- 4893 Exibições
- Última mensagem por Gebe

Dom Ago 26, 2018 19:52
Funções
-
- Equação da Reta Tangente
por Saturnino Nataniel » Ter Nov 06, 2012 21:42
- 1 Respostas
- 2012 Exibições
- Última mensagem por e8group

Qua Nov 14, 2012 10:27
Cálculo: Limites, Derivadas e Integrais
-
- [Equação da reta tangente]
por carolzinhag3 » Seg Out 03, 2016 19:43
- 1 Respostas
- 3443 Exibições
- Última mensagem por adauto martins

Sex Jan 06, 2017 15:18
Cálculo: Limites, Derivadas e Integrais
-
- [Equação da reta Tangente] derivadas
por lucasdemirand » Qua Ago 07, 2013 00:28
- 1 Respostas
- 2100 Exibições
- Última mensagem por young_jedi

Qua Ago 07, 2013 20:12
Cálculo: Limites, Derivadas e Integrais
-
- Achar a Equação de uma reta tangente
por Gabriela Amaral » Dom Set 10, 2017 13:41
- 1 Respostas
- 3157 Exibições
- Última mensagem por Gabriela Amaral

Dom Set 10, 2017 18:47
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.