• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dúvida Derivada]: Empaquei , regra do quociente (eu acho)

[Dúvida Derivada]: Empaquei , regra do quociente (eu acho)

Mensagempor Moreschi » Sex Set 21, 2012 17:03

olá Pessoal este é meu post de estréia aqui, acompanho o fórum há algum tempo e já retirei informações importantes daqui, mas estava resolvendo uma lista de derivadas e me deparei com esta\frac{d}{ds}=\left(\frac{{s}^{2}-{a}^{2}}{{s}^{2}+{a}^{2}} \right), simplesmente nao consigo resolver aplico a regra do quociente mas não chega a lugar nenhum, realmente apanhei desta. agradeceria uma ajuda
Moreschi
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Set 21, 2012 16:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: formado

Re: [Dúvida Derivada]: Empaquei , regra do quociente (eu ach

Mensagempor young_jedi » Sex Set 21, 2012 18:44

vamos la então Moreschi

a regra do produto diz que

\frac{d}{ds}\left(\frac{f(s)}{g(s)\right)}&=&\frac{f'(s).g(s)-f(s).g'(s)}{g^2(s)}

f(s)&=&s^2-a^2

g(s)&=&s^2+a^2

f'(s)&=&2.s

g'(s)&=&2.s

\frac{d}{ds}\left(\frac{f(s)}{g(s)}\right)&=&\frac{2s.(s^2+a^2)-(s^2-a^2).2.s.}{(s^2+a^2)^2}

\frac{d}{ds}\left(\frac{f(s)}{g(s)}\right)&=&\frac{4.s.a^2}{(s^2+a^2)^2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Dúvida Derivada]: Empaquei , regra do quociente (eu ach

Mensagempor Moreschi » Seg Set 24, 2012 09:03

PeraÊ vc tratou o "a" como uma constante? por isso ficou daquele jeito ?

mas de qualquer forma obrigado :D
Moreschi
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Set 21, 2012 16:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: formado

Re: [Dúvida Derivada]: Empaquei , regra do quociente (eu ach

Mensagempor young_jedi » Seg Set 24, 2012 10:18

extamente a menos que o exercicio tenha falado algo sobre a, temos que ele é uma constante
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}