• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Erro na resolução?

Erro na resolução?

Mensagempor Cleyson007 » Sex Set 21, 2012 16:50

Boa tarde a todos!

Calcule \frac{d}{dx}\left(\frac{2+x}{3-x} \right)

Minha resolução não "bate" com o gabarito, no entanto, não encontro aonde está o meu erro.. Help!

\frac{dy}{dx}=\lim_{{\Delta}_{x}\rightarrow0}\frac{\frac{2+x+\Delta\,t}{3-x+\Delta\,t}-\left(\frac{2+x}{3-x} \right)}{\Delta\,t}

\frac{dy}{dx}=\lim_{{\Delta}_{x}\rightarrow0}\frac{(3-x)(2+x+\Delta\,t)-(2+x)(3-x+\Delta\,t)}{(3-x)(3-x+\Delta\,t)}\left(\frac{1}{\Delta\,t} \right)

\frac{dy}{dx}=\lim_{{\Delta}_{x}\rightarrow0}\frac{6+3x+3\Delta\,t-2x-{x}^{2}-x\Delta\,t-(6-2x+2\Delta\,t+3x-{x}^{2}+x\Delta\,t)}{9-3x+3\Delta\,t-3x+{x}^{2}-x\Delta\,t}

\frac{dy}{dx}=\lim_{{\Delta}_{x}\rightarrow0}\frac{3\Delta\,t-x\Delta\,t-2\Delta\,t-x\Delta\,t}{9-6x+3\Delta\,t+{x}^{2}-x\Delta\,t}\left(\frac{1}{\Delta\,t} \right)

\frac{dy}{dx}=\lim_{{\Delta}_{x}\rightarrow0}\,\frac{\Delta\,t-2x\Delta\,t}{9\Delta\,t-6x\Delta\,t+3{(\Delta\,t})^{2}+{x}^{2}\Delta\,t-x{(\Delta\,t)}^{2}}

\frac{dy}{dx}=\lim_{{\Delta}_{x}\rightarrow0}\,\frac{\Delta\,t(1-2x)}{\Delta\,t(9-6x+3\Delta\,t+{x}^{2}-x\Delta\,t)}

\frac{dy}{dx}=\frac{1-2x}{(3-x)^2}

Gabarito: \frac{dy}{dx}=\frac{5}{(3-x)^2}

Agradeço a ajuda :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Erro na resolução?

Mensagempor young_jedi » Sex Set 21, 2012 17:53

\frac{dy}{dx}&=&\lim_{\Delta t \rightarrow 0}\frac{\frac{2+(x+\Delta t)}{3-(x+\Delta t)}-\frac{2+x}{3-x}}{\Delta t}

ou seja

\frac{dy}{dx}&=&\lim_{\Delta t \rightarrow 0}\frac{\frac{2+x+\Delta t}{3-x-\Delta t}-\frac{2+x}{3-x}}{\Delta t}

repare que no denominador do primeiro termo 3-x-\Delta t o sinal de \Delta t esta invertido
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.