• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ângulo de reta com projeção

Ângulo de reta com projeção

Mensagempor manuel_pato1 » Qui Set 20, 2012 22:26

Galera, se alguém puder me ajudar, eu agradeço MUITO.

Determinar o ângulo que a reta que passa por A( 3, -1, 4) e B( 1,3,2) forma com a sua projeção sobre XY.

Sei que o vetor AB = (-2, 4, -2)

E a projeção seria V= ( -2, 4, 0 ) ? Se sim, é pq ele quer somente os valores de x e y projetados ?

Depois disso , fiz pela fórmula do ângulo entre retas( Cos = IAB. vI / IvI.IABI ), mas não obtive sucesso.



Desde já, muito obrigado
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Ângulo de reta com projeção

Mensagempor young_jedi » Qui Set 20, 2012 23:14

V não é o vetor prjeção mais ele aponta para mesma direção que o vetor projeção
logo utilizando a relação que voce mostrou:

cos\theta&=&\frac{AB.V}{|AB|.|V|}

deve dar o angulo que voce procura
porem vc disse que vc nao obteve sucesso,
Sua resposta não bateu com o gabarito?
se não, poste ai sua resposta se possivel os calculos e o gabarito
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Ângulo de reta com projeção

Mensagempor manuel_pato1 » Sex Set 21, 2012 11:19

Deu certo pela fórmula citada. O problema é que eu não estava racionalizando. Depois que racionalizei, simplifiquei ,etc... aí consegui o resultado correto: \sqrt[]{30}/6
Obrigado pela resposta, mas então . Se o professor pedisse essa questão a prova, eu poderia colocar direto que o vetor v, que aponta na direção do vetor projeção sobre XY é (x,y,0) , ou teria que provar de alguma forma que o valor em Z deverá ser nulo?
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Ângulo de reta com projeção

Mensagempor young_jedi » Sex Set 21, 2012 12:29

No meu ver seria suficiente dizer que apontando para a direção de (x,y,0) ele apontaria para a mesma direção do vetor projeção.

Uma outra solução seria encontrar um vetor normal ao plano xy ou seja v=(0,0,z) para um z qualquer positivo
(igual a 1 por exemplo) utilizando a formula

cos\phi&=&\frac{|AB.V|}{|AB||V|}

sendo que \phi é o angulo que o vetor faz com o eixo Z então para encontrar o angulo com relação ao plano xy é so fazer

\theta&=&90^o-\phi
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Ângulo de reta com projeção

Mensagempor manuel_pato1 » Sex Set 21, 2012 14:19

Meu velho, nem sei como te agradecer. Muito obrigado, consegui entender certinho pela tua explicação. Abração
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}