• Anúncio Global
    Respostas
    Exibições
    Última mensagem

RE: TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

RE: TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

Mensagempor anneliesero » Ter Set 18, 2012 17:08

Boa tarde, pessoal! ;)

Será que vocês podem me ajudar nesta questão?


(UN. NORTE DO PARANÁ) - Se um cateto e a hipotenusa de um triângulo retângulo medem a e 3a, respectivamente, então o o cosseno do ângulo oposto ao menor lado é:

a) \frac{\sqrt[]{10}}{10}

b) \frac{\sqrt[2]{2}}{3}



c) \frac{1}{3}


d) \frac{\sqrt[]{2}}{3}


e) \sqrt[2]{2}



Conto com a ajuda de vocês!!!
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: RE: TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

Mensagempor young_jedi » Ter Set 18, 2012 17:27

primeiro voce tem que achar o outro cateto, por pitagoras

b^2+a^2&=&(3a)^2

b^2&=&9a^2-a^2

b&=&\sqrt{8a^2}

b&=&2\sqrt{2}a

sendo assim os catetos são a e 2\sqrt{2}a
o menor cateto portanto é a entao o cateto adjacente mede 2\sqrt{2}a
sendo o cosseno do angulo igual ao cateto adjacente sobre a hipotenusa

cos(x)&=&\frac{2\sqrt{2}a}{3a}

simplificando vc encontra a resposta
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: RE: TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

Mensagempor Cleyson007 » Ter Set 18, 2012 17:31

Boa tarde Anneliesero!

senx = a/3a ---> senx = 1/3

Pela "Relação Fundamenta da Trigonometria", temos: sen² x + cos² x = 1

(1/3)² + cos² x = 1

cos² x = 1 - 1/9

cos² x = 8/9

cos x =2V2/3

Espero ter lhe ajudado.

Abraço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}