• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Arco Duplo]Cos(2a)

[Arco Duplo]Cos(2a)

Mensagempor Giudav » Sáb Set 15, 2012 12:48

Sabe-se que 0 ° \leq x \leq 90 ° e que Cos (2x) = \frac{1}{4} .Determine o valor de Cos (x)

Minha resolução :y: Cos(2x) = \frac{1}{4} e se ele está no 1° quadrante logo {Sen}^{2} + {Cos}^{2}=1
Após isso não consequi mais nada ;)



Gabarito: Cos(x)=\frac{\sqrt[]{5}}{2\sqrt[]{2}} :-P
-----------------------------------------------------------------------------
Muito Obrigado!
Editado pela última vez por Giudav em Sáb Set 15, 2012 14:20, em um total de 1 vez.
Giudav
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Fev 21, 2012 23:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Arco Duplo]Cos(2a)

Mensagempor MarceloFantini » Sáb Set 15, 2012 14:14

Lembre-se que \cos^2 x = \frac{1 + \cos (2x)}{2}, então \cos^2 x = \frac{1 + \frac{1}{4}}{2} = \frac{5}{8} e \cos x = \sqrt{\frac{5}{8}} = \frac{\sqrt{5}}{2 \sqrt{2}}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Arco Duplo]Cos(2a)

Mensagempor DanielFerreira » Sáb Set 15, 2012 22:38

De onde parou: \begin{cases} cos \, (2x) = \frac{1}{4} \\\\ sen^2 \, x + cos^2 \, x = 1 \end{cases}

Proseguindo...
\\ cos \, (2x) = \frac{1}{4} \\\\ cos \, (x + x) = \frac{1}{4} \\\\ cos \, x \cdot cos \, x - sen \, x \cdot sen \, x = \frac{1}{4} \\\\ \boxed{cos^2 \, x - sen^2 \, x = \frac{1}{4}}

Resolvendo o sistema:

\\ \begin{cases} cos^2 \, x \cancel{- sen^2 \, x} = \frac{1}{4} \\\\ cos^2 \, x \cancel{+ sen^2 \, x} = 1 \end{cases} \\ ---------- \\\\ 2 \cdot cos^2 \, x = \frac{1}{4} + \frac{4}{4} \\\\\\ 2 \cdot cos^2 \, x = \frac{5}{4} \\\\\\ cos^2 \, x = \frac{5}{8} \\\\ ...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: