• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Arco Duplo]Cos(2a)

[Arco Duplo]Cos(2a)

Mensagempor Giudav » Sáb Set 15, 2012 12:48

Sabe-se que 0 ° \leq x \leq 90 ° e que Cos (2x) = \frac{1}{4} .Determine o valor de Cos (x)

Minha resolução :y: Cos(2x) = \frac{1}{4} e se ele está no 1° quadrante logo {Sen}^{2} + {Cos}^{2}=1
Após isso não consequi mais nada ;)



Gabarito: Cos(x)=\frac{\sqrt[]{5}}{2\sqrt[]{2}} :-P
-----------------------------------------------------------------------------
Muito Obrigado!
Editado pela última vez por Giudav em Sáb Set 15, 2012 14:20, em um total de 1 vez.
Giudav
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Fev 21, 2012 23:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Arco Duplo]Cos(2a)

Mensagempor MarceloFantini » Sáb Set 15, 2012 14:14

Lembre-se que \cos^2 x = \frac{1 + \cos (2x)}{2}, então \cos^2 x = \frac{1 + \frac{1}{4}}{2} = \frac{5}{8} e \cos x = \sqrt{\frac{5}{8}} = \frac{\sqrt{5}}{2 \sqrt{2}}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Arco Duplo]Cos(2a)

Mensagempor DanielFerreira » Sáb Set 15, 2012 22:38

De onde parou: \begin{cases} cos \, (2x) = \frac{1}{4} \\\\ sen^2 \, x + cos^2 \, x = 1 \end{cases}

Proseguindo...
\\ cos \, (2x) = \frac{1}{4} \\\\ cos \, (x + x) = \frac{1}{4} \\\\ cos \, x \cdot cos \, x - sen \, x \cdot sen \, x = \frac{1}{4} \\\\ \boxed{cos^2 \, x - sen^2 \, x = \frac{1}{4}}

Resolvendo o sistema:

\\ \begin{cases} cos^2 \, x \cancel{- sen^2 \, x} = \frac{1}{4} \\\\ cos^2 \, x \cancel{+ sen^2 \, x} = 1 \end{cases} \\ ---------- \\\\ 2 \cdot cos^2 \, x = \frac{1}{4} + \frac{4}{4} \\\\\\ 2 \cdot cos^2 \, x = \frac{5}{4} \\\\\\ cos^2 \, x = \frac{5}{8} \\\\ ...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.