por Mariana Martin » Ter Set 11, 2012 18:20
Oi, pessoal!
Simplificando a expressão:

, obtém-se:
Resposta:

Minha resolução foi:

Como vocês podem ver, o resultado não bateu... Me ajudem, por favor, a achar meu erro. Já repeti esse exercício várias vezes, e nada.
Obrigada
-
Mariana Martin
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Qui Jun 21, 2012 15:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por young_jedi » Ter Set 11, 2012 19:34
Oi Mariana Martin
sugiro que para esta questão vc utilize as identidade trigonometircas


assim tera


resolvendo


para


sua equação ficaria então

apartir dai da pra chegar a resposta
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Mariana Martin » Qua Set 12, 2012 21:37
Não entendi essa parte:


Cada uma é uma identidade ou é continuação?
Me desculpe, mas nunca tinha vista essa identidade imaginei que era preciso apenas fazer distributiva. assim:

-
Mariana Martin
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Qui Jun 21, 2012 15:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Cleyson007 » Qua Set 12, 2012 21:43
Mariana, boa noite!
Desculpe tomar a liberdade de responder a sua dúvida (faço-o devido o nosso amigo young_jed não estar online no momento).
São identidadades trigonométricas!
--> Cada caso é um caso (uma é para o seno e a outra para o cosseno).
Comente qualquer dúvida
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Mariana Martin » Sáb Set 15, 2012 09:30
Entendi.
Estava lendo num livro didático a seguinte identidade trigonométrica:
cos(p-a) = -cosa
só que há essa também:
cos(p-a) = cosp.cosa - senp.sena
Como pode haver duas identidades para o mesmo caso?
Obrigada
-
Mariana Martin
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Qui Jun 21, 2012 15:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Sáb Set 15, 2012 11:08
Olá
Mariana,
bom dia!
O correto é:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por MarceloFantini » Sáb Set 15, 2012 12:30
A menos que esse tal

seja

. Isto pode ser verificado usando a identidade dada:

, mas

e

, daí

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Mariana Martin » Seg Set 24, 2012 09:43
Entendi. Obrigada pela ajuda pessoal!
-
Mariana Martin
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Qui Jun 21, 2012 15:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Mariana Martin » Seg Set 24, 2012 11:52

Desculpe pessoal, estava revendo este trecho e não entendi porque dá esse resultado.
Porque Tg(a+b) = tga + tgb / 1 - tga.tab
E não bate o resultado segundo essa identidade
-
Mariana Martin
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Qui Jun 21, 2012 15:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por young_jedi » Seg Set 24, 2012 14:37
se voce utlizar essa relação voce tera que

então não da para utilizar essa relação para esse caso
por isso vc tem que fazer uma analise do circulo trigonometrico para chegar ao valor correto
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Mariana Martin » Seg Set 24, 2012 15:35
Como?
-
Mariana Martin
- Usuário Dedicado

-
- Mensagens: 27
- Registrado em: Qui Jun 21, 2012 15:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Funções circulares
por Mariana Martin » Seg Set 24, 2012 15:20
- 1 Respostas
- 1352 Exibições
- Última mensagem por young_jedi

Seg Set 24, 2012 15:52
Trigonometria
-
- Funções circulares inversas
por Ananda » Qui Mar 20, 2008 20:03
- 2 Respostas
- 4706 Exibições
- Última mensagem por Ananda

Seg Mar 24, 2008 17:13
Trigonometria
-
- funçoes circulares inversas
por Thassya » Sex Mai 29, 2009 11:29
- 3 Respostas
- 2402 Exibições
- Última mensagem por Cleyson007

Sáb Mai 30, 2009 10:18
Trigonometria
-
- Função Circulares inversas 2
por Fernanda90 » Qui Ago 27, 2009 16:52
- 2 Respostas
- 4110 Exibições
- Última mensagem por Fernanda90

Qui Ago 27, 2009 20:25
Trigonometria
-
- Funções reais. como resolver estas funções...
por LEANDRO HENRIQUE » Ter Mar 04, 2014 18:43
- 0 Respostas
- 3264 Exibições
- Última mensagem por LEANDRO HENRIQUE

Ter Mar 04, 2014 18:43
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.