• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divisão polinômios

Divisão polinômios

Mensagempor vivi » Dom Set 09, 2012 20:03

. Seja D um domínio e f(x)?D(x). Prove: Se f(x) é divisível por x-a e também por x-b sendo a,b ?D e a?b,então f(x) é divisível por (x-a)(x-b)

Oi eu pensei na divisão da seguinte forma D=d.q+r, como sei que o resto deve ser nulo pois x-a e x-b são divisores de f(x)...comecei dessa forma alguém poderia me ajudar a concluir o racícionío...

f(x)=(x-a).q
f(x)=xq-aq
E
f(x)=(x-b).q
f(x)=xq-bq
Logo xq-aq=xq-bq
-aq=-bq
-aq+bq=0
q(a+b)=0
q=0 ou a+b=0

Muito obrigado
vivi
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jun 26, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Divisão polinômios

Mensagempor DanielFerreira » Dom Set 09, 2012 21:31

Olá Vivi,
boa noite!

- A divisão do polinômio f(x) por x - a dá resto 0, então f(a) = 0

- A divisão do polinômio f(x) por x - b dá resto 0, então f(b) = 0

Consideremos q(x) o quociente e r = cx + d o resto da divisão do polinômio f(x) por (x - a)(x - b), segue que

\boxed{f(x) = q(x) \cdot (x - a)(x - b) + r}

f(x) = q(x) \cdot (x - a)(x - b) + cx + d


Quando f(a):

f(a) = q(a) \cdot (a - a)(a - b) + c \cdot a + d

0 = ac + d


Quando f(b):

f(b) = q(b)(b - a)(b - b) + c \cdot b + d

0 = bc + d

Resolvendo o sistema:

\begin{cases} ac + d = 0 \\ bc + d = 0 \end{cases}

Encontramos, a = b, mas de acordo com o enunciado, a \neq b, com isso, podemos concluir que \boxed{c = 0}. Substituindo esse valor em uma das outras equações, teremos \boxed{d = 0}.

Logo,
r = cx + d

\boxed{\boxed{r = 0}}

Espero ter ajudado!

Daniel F.

Já estava esquecendo de comentar sua solução.

Se q for o quociente, e tenho certeza que sim, você não pode considerá-lo igual a zero. Mas sim a + b = 0
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Divisão polinômios

Mensagempor vivi » Seg Set 10, 2012 11:36

Ajudou muito, agora consegui entender o raciocínio correto.

Obrigado!
vivi
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jun 26, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Divisão polinômios

Mensagempor DanielFerreira » Seg Set 10, 2012 23:11

Não há de quê e volte sempre!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59