• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cot^2 x =1/3

cot^2 x =1/3

Mensagempor jaegger » Qui Set 06, 2012 10:06

Olá todo mundo, de alguns exercicios de trigo, tenho 2 que não consigo resolver, sera que alguém me consegue ajudar?

1º Resolver a equação :cos^2(x + 2pi/3) = sen^2(x + 2pi/3)

2ºResolver a equação : cotg^2 x =1/3

Depois tenho que representar no circulo trigonométrico.

Obrigado pessoal.
jaegger
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Set 06, 2012 09:47
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: cot^2 x =1/3

Mensagempor LuizAquino » Qui Set 06, 2012 12:47

jaegger escreveu:Olá todo mundo, de alguns exercicios de trigo, tenho 2 que não consigo resolver, sera que alguém me consegue ajudar?

1º Resolver a equação :cos^2(x + 2pi/3) = sen^2(x + 2pi/3)

2ºResolver a equação : cotg^2 x =1/3

Depois tenho que representar no circulo trigonométrico.


Você disse que de alguns exercícios estes são os que você não conseguiu fazer. Mas você chegou a tentar alguma coisa neles? Até onde você conseguiu desenvolver?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: cot^2 x =1/3

Mensagempor jaegger » Qui Set 06, 2012 17:38

Bem, para o 1º tentei : cos^2(x+2pi/3)-sin^2(x+2pi/3)=0
                                         [cos(x+2pi/3)-sin(x+2pi/3)][cos(x+2pi/3)+sin(x+2pi/3)]=0
                                          cos(x+2pi/3)-sin(x+2pi/3)=0  ou  cos(x+2pi/3)+sin(x+2pi/3)=0
mas depois não lhe sei dar a volta.


Para o segundo sei que cotg^2 x=1/3 => tg^2 x=3, será que devo pegar com tg^2x =sin x/cos x?
Sera que assim vou la´?
jaegger
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Set 06, 2012 09:47
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: cot^2 x =1/3

Mensagempor LuizAquino » Sáb Set 08, 2012 14:51

jaegger escreveu:Bem, para o 1º tentei : cos^2(x+2pi/3)-sin^2(x+2pi/3)=0
                                         [cos(x+2pi/3)-sin(x+2pi/3)][cos(x+2pi/3)+sin(x+2pi/3)]=0
                                          cos(x+2pi/3)-sin(x+2pi/3)=0  ou  cos(x+2pi/3)+sin(x+2pi/3)=0
mas depois não lhe sei dar a volta.


Para o segundo sei que cotg^2 x=1/3 => tg^2 x=3, será que devo pegar com tg^2x =sin x/cos x?
Sera que assim vou la´?


A ideia básica na resolução de uma equação trigonométrica é deixá-la em um formato que só apareça um das funções trigonométricas. Ou seja, que só apareça seno, ou só apareça cosseno, ou só tangente, etc.

Na primeira equação, lembrando da identidade fundamental \textrm{sen}^2\,\alpha + \cos^2\alpha = 1 , podemos escrever que:

\cos^2 \left(x + \frac{2\pi}{3}\right) = \textrm{sen}^2\,\left(x + \frac{2\pi}{3}\right)

\cos^2 \left(x + \frac{2\pi}{3}\right) = 1 - \cos^2\,\left(x + \frac{2\pi}{3}\right)

\cos^2 \left(x + \frac{2\pi}{3}\right) = \frac{1}{2}

\cos \left(x + \frac{2\pi}{3}\right) = \pm\frac{\sqrt{2}}{2}}

Se considerarmos que estamos trabalhando no intervalo [0, 2\pi] , sabemos que \cos \frac{\pi}{4} = \cos \frac{7\pi}{4} = \frac{\sqrt{2}}{2} e \cos \frac{3\pi}{4} = \cos \frac{5\pi}{4} = -\frac{\sqrt{2}}{2} . Temos então quatro possibilidades:

(i) x + \frac{2\pi}{3} = \frac{\pi}{4} \implies x = - \frac{5\pi}{12} ;

(ii) x + \frac{2\pi}{3} = \frac{3\pi}{4}\implies x = \frac{\pi}{12} ;

(iii) x + \frac{2\pi}{3} = \frac{5\pi}{4} \implies x = \frac{7\pi}{12} ;

(iv) x + \frac{2\pi}{3} = \frac{7\pi}{4}\implies x = \frac{13\pi}{12} ;

Lembrando que o ângulo - \frac{5\pi}{12} é o mesmo que o ângulo \frac{19\pi}{12} , podemos dizer que a solução (em ordem crescente) da equação é dada por S = \left\{\frac{\pi}{12},\, \frac{7\pi}{12},\, \frac{13\pi}{12},\,\frac{19\pi}{12}\right\} . Agora tente esboçar essa solução no círculo trigonométrico.

Já em relação a segunda equação, tente resolvê-la. Note que você já tem \textrm{tg}\,x = \pm \sqrt{3} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Trigonometria

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: