Tenho buscado na internet algoritmos de teste de primalidade de números. Deparei-me com o AKS e Monte-Carlo, sendo o AKS determinístico e o M.C. probabilístico, porém o M.C. é muito mais rápido. Contudo li artigos e monografias com gráficos de execução dos referidos algoritmos e eles funcionam bem para primos pequenos, digamos com 6 dígitos, além do que o tempo de resposta cresce de tal maneira que fica inviável testar a primalidade de centenas de dígitos, duraria uma eternidade. Estou supondo que fonte que li está correta.
Então gostaria de saber, se hoje em dia em comércio eletrônico e em protocolos de criptografia usam-se primos grandes, deve existir um meio de obtê-los. Na internet só se mostra listagens de primos pequenos. E os grandes, como descobri-los?
Preciso da informação para realização de software, então qualquer ajuda é muito bem vinda.




![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.