por Rodrigo Costa » Qua Set 05, 2012 18:49
Temos duas funções: A parábola do jato de água e a reta do canhão de luz.
Parabola: y1 = ax^2 + bx + c
Reta: y2 = dx + e
Considerando a origem do sistema no chão do prédio menor, podemos afirmar que a reta passa pelo ponto (0,0), pois o feixe sai da base do prédio menor e pelo ponto (18,36), pois o feixe bate no topo do prédio maior. Substituindo os pontos na equação da reta:
1) 0 = d.(0) + e
2) 36 = d(18) + e
Resolvendo o sistema, temos:
d = 2
e = 0
Portanto a reta possui equação:
y2 = 2x
O jato de água sai do topo do prédio menor (0,9) e cai no chão do prédio maior (18,0). Portanto esses dois pontos podem ser utilizados na equação da parábola:
1) a.(0)^2 + b.(0) + c = 9
2) a.(18)^2 + b.(18) + c = 0
Da equação 1), temos que c = 9. Substituindo o valor de c na equação 2), temos:
324a + 18b + 9 = 0
a = -(9+18b)/324
As coordendas do vértice em função dos coeficientes da equação da parábola são:
xv = -b/2a
yv = -(b^2 - 4ac)/4a
Como o problema diz que a reta passa pelo vértice da parábola, significa que as coordenadas do vértice satisfazem a equação da reta. Portando, substituindo xv e yv na equação da reta:
y2 = 2x
yv = 2.xv
-(b^2 - 4ac)/4a = 2.(-b/2a)
-(b^2 - 4ac)/4 = -b
(b^2 - 4ac)/4 = b
b^2 - 4b - 4ac = 0
Agora substituímos o valor de "c" e "a" encontrados acima nesta equação:
b^2 - 4b - 4.(-(9+18b)/324).(9) = 0
b^2 - 4b +36.[(9+18b)/324] = 0
b^2 - 4b +[(9+18b)/9] = 0
9b^2 - 36b + 9 + 18b = 0
9b^2 - 18b + 9 = 0
Resolvendo a equação do 2º grau em "b", temos:
b1 = b2 = +1
Portanto b = 1
Agora, substituímos o valor de "b" em "a":
a = -(9+18b)/324
a = -(9 + 18.1)/324
a = -1/12
O problema pede a altura em que a água e a luz se encontram. Portanto, queremos saber o valor de y no ponto do vértice (yv):
yv = -(b^2 - 4ac)/4a
yv = -(1^1 - 4.(-1/12).(9)) / (4.(-1/12))
yv = (1+3)/(1/3)
yv = 4.3
yv = 12 metros
Espero que tenha ajudado!