• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Métodos para encontrar det

Métodos para encontrar det

Mensagempor Malorientado » Ter Set 04, 2012 22:20

Conhecendo a regra de Chió, as propriedades dos determinantes e a regra de Sarrus posso encontrar o determinante de qualquer matriz de ordem maior que 2 em uma questão? Se sim, vou pular todos os outros métodos, como menor complementar, definição de det por recorrência e Teorema de Laplace. Estou a 1 mês de um concurso e preciso ganhar tempo. Caso não, há somente um método que possa satisfazer a todas?
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Métodos para encontrar det

Mensagempor MarceloFantini » Ter Set 04, 2012 23:35

Não conheço a regra de Chió, mas este link diz que não é recomendado como método geral para encontrar determinantes. A regra de Sarrus nada mais é do que uma memorização (pior) da expansão de Laplace para matrizes 3 \times 3. As propriedades de determinantes são válidas sempre.

Pessoalmente, nunca vi questões envolvendo determinantes maiores que 3 \times 3 que não tivesse uma sacada para facilitar a conta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.