• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação geral do plano usando duas retas

Equação geral do plano usando duas retas

Mensagempor iarapassos » Sáb Set 01, 2012 19:12

Olá pessoal.

O exercício do qual tenho dúvida é:

Determine, se possível, uma equação geral do plano determinado pelas retas r e s, nos seguintes casos:

c)r: X=(1,2,3) + h(1,0,2);h\in\Re 


s: X=(0,3,1) + t(2,0,4);t\in\Re

Eu fiz as questões a e b e nelas foi possível achar o vetor normal do plano formado pelas retas, pois eles eram LI e portanto paralelos. O produto vetorial dos vetores diretores das retas resulta na normal do plano.
Mas na letra c, os vetores são LD, ou seja, eles são paralelos. Nesse caso, como achar a equação geral do plano?
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Equação geral do plano usando duas retas

Mensagempor LuizAquino » Sáb Set 01, 2012 22:54

iarapassos escreveu:O exercício do qual tenho dúvida é:

Determine, se possível, uma equação geral do plano determinado pelas retas r e s, nos seguintes casos:

c)r: X=(1,2,3) + h(1,0,2);h\in\Re 

s: X=(0,3,1) + t(2,0,4);t\in\Re

Eu fiz as questões a e b e nelas foi possível achar o vetor normal do plano formado pelas retas, pois eles eram LI e portanto paralelos. O produto vetorial dos vetores diretores das retas resulta na normal do plano.


Observação: o correto seria dizer "achar o vetor normal do plano formado pelos vetores diretores das retas, pois eles eram LI e portanto não paralelos".

iarapassos escreveu:Mas na letra c, os vetores são LD, ou seja, eles são paralelos. Nesse caso, como achar a equação geral do plano?


Simples: como essas retas são paralelas e não coincidentes (verifique), basta escolher um ponto P na reta r e um ponto Q na reta s. Um vetor normal ao plano será dado por \overrightarrow{PQ}\times(1,\,0,\,2) (ou ainda, por \overrightarrow{PQ}\times(2,\,0,\,4)).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equação geral do plano usando duas retas

Mensagempor iarapassos » Dom Set 02, 2012 22:15

Verdade, acho que escrevei com pressa e acabei escrevendo errado. Se são LI, não são paralelos. E tbm mandei em falar "formado pelas retas" e não por seus vetores diretores. Valeu pela dica!
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.