• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor Douglaspimentel » Qui Abr 08, 2010 17:13

(ufma) Seja f: R---> R umafunção, tal que 2f(2x+1)= f(x) - 5 para todo x real. O valor de f(0), sabendo-se que f(31)=0, é:
a) 255 b) 0 c)150 d)75,5 e) 155



Não sei achar o f(x) ??
Douglaspimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Mar 05, 2010 12:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: nada
Andamento: cursando

Re: Função

Mensagempor Molina » Qui Abr 08, 2010 18:05

Douglaspimentel escreveu:(ufma) Seja f: R---> R umafunção, tal que 2f(2x+1)= f(x) - 5 para todo x real. O valor de f(0), sabendo-se que f(31)=0, é:
a) 255 b) 0 c)150 d)75,5 e) 155



Não sei achar o f(x) ??


Boa tarde.

Estou meio sem tempo então vou colocar aqui minha ideia inicial.

2f(2x+1) = f(x) - 5

2f(2*15+1) = f(15) - 5

2f(31) = f(15) - 5

0 = f(15) - 5

f(15) = 5

Bom, usando o f(31) eu descobri o f(15). Então faça o mesmo procedimento em 2f(2x+1) = f(x) - 5 só que agora substitua x por 7 que você vai descobrir o f(7). Posteriormente você terá que fazer provavelmente para x = 3, descobrindo assim f(3) e assim por diante... Até chegar em f(0).

Depois coloque se você conseguiu, ok? Caso não, eu termino depois com mais tempo.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Função

Mensagempor cristiani » Qui Ago 30, 2012 12:26

Tentei resolver a questão. Poderia me confirmar se a resposta é a mesma que eu encontrei? R = 155 ? Obrigada. :)
cristiani
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Ago 30, 2012 12:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: formado

Re: Função

Mensagempor Molina » Sex Ago 31, 2012 21:36

Boa noite, Cristiani.

cristiani escreveu:Tentei resolver a questão. Poderia me confirmar se a resposta é a mesma que eu encontrei? R = 155 ? Obrigada. :)


Está correta sua resposta.

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.