por Catalao » Qui Ago 23, 2012 14:54
Oi pessoal, tudo bem?
Eu estou fazendo faculdade de matematica e estou no primeiro ano. Estou com algumas dificuldades em algumas matérias, pois tive um péssimo colegial.
Minha dúvida é a seguinte: Estou tendo Geometria Euclidiana Plana agora nesse semestre e gostaria que alguem pudesse me sugerir um metodo de estudo, pq n estou entendendo mta coisa. Parece que a minha prof complica. As provas por teoremas e axiomas. Estou tentando estudar mais e me dedicar mais nesse semestre.
Gostaria que alguem me ajudasse e me desse algumas dicas.
Grata.
-
Catalao
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Mai 09, 2012 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por MarceloFantini » Qui Ago 23, 2012 16:26
Boa tarde Catalão. As dificuldades no ingresso da universidade são comuns, acredito que seja minoria que tenha um ensino médio muito bom a tal ponto que não sinta o início do curso pesado. Dito isto, seria bom se você pudesse especificar um pouco mais suas dificuldades, talvez com exercícios que você tentou fazer ou que sua professora fez e você não compreendeu o desenvolvimento/método/raciocínio. Assim, atacamos as dúvidas diretamente e não perdemos tempo com conselhos que podem ser vagos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Catalao » Seg Ago 27, 2012 00:09
Olá, MarceloFantini, desculpe a demora para responder... esse foi o único tempo que tive.
Então n sei explicar direito. Quando foi provar um teorema me complico toda, n sei se tenho q rever coisas do ensino médio. Gostaria de n reprovar nessa materia e vou estudar pra isso mas preciso ser direcionada.
Na mat do ensino superior como vc sabe a geo euclidiana plana é mais provar os teoremas, então talvez seja mais isso q fico em duvida. Mesmo assim estou pretendendo rever coisas do ens. medio ( q estou achando q nem tive).
Se vc tiver algum conselho eu agradeço.
E obrigada por responder ao meu tópico.
Grata.
-
Catalao
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Mai 09, 2012 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por MarceloFantini » Seg Ago 27, 2012 08:51
Rever coisas do ensino médio é bom, mas não rever resultados: rever demonstrações. Matemática se faz provando resultados, que são seus problemas. Geometria euclideana plana é um bom começo para treinar. Existem teoremas bem complicados, procure tentar demonstrar coisas mais simples. A maneira que mais podemos ajudar é, quando se deparar com algo que não consegue resolver, traga para o fórum e tentaremos provar.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Seg Ago 27, 2012 09:55
Catalao escreveu:Oi pessoal, tudo bem?
Eu estou fazendo faculdade de matematica e estou no primeiro ano. Estou com algumas dificuldades em algumas matérias, pois tive um péssimo colegial.
Minha dúvida é a seguinte: Estou tendo Geometria Euclidiana Plana agora nesse semestre e gostaria que alguem pudesse me sugerir um metodo de estudo, pq n estou entendendo mta coisa. Parece que a minha prof complica. As provas por teoremas e axiomas. Estou tentando estudar mais e me dedicar mais nesse semestre.
Gostaria que alguem me ajudasse e me desse algumas dicas.
A dificuldade com exercícios de demonstração é algo comum entre os alunos da área de exatas. Não é a sua professora que "está complicando". Esse tipo de exercício é naturalmente trabalhoso.
Vide o que foi discutido no tópico abaixo:
Dificuldade em exercícios de demonstraçãoviewtopic.php?f=120&t=7037
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Catalao » Seg Ago 27, 2012 13:15
MarceloFantini e LuizAquino, agradeço a atenção que me disponibilizaram. Entrei no tópico que o LuizAquino falou e achei mto interessante os comentários do pessoal. Baixei os 2 livros que foram recomendados. Agora é estudar. Mesmo assim vou rever um pouco da geo plana do ens. médio.
Depois faço um post falando da minha experiência. Se conseguir me dar bem kkkkkkkkk.
Grata.
-
Catalao
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Mai 09, 2012 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria euclidiana plana
por daniela1994 » Ter Mar 13, 2012 15:47
- 2 Respostas
- 2461 Exibições
- Última mensagem por Luiz Augusto Prado

Qua Mar 14, 2012 08:30
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Qua Ago 07, 2013 18:05
- 1 Respostas
- 1958 Exibições
- Última mensagem por e8group

Qui Ago 08, 2013 16:23
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Qua Ago 07, 2013 18:29
- 1 Respostas
- 1639 Exibições
- Última mensagem por MateusL

Qui Ago 08, 2013 02:07
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Sáb Ago 31, 2013 19:20
- 6 Respostas
- 7789 Exibições
- Última mensagem por adauto martins

Dom Jan 15, 2017 11:45
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Dom Set 01, 2013 14:50
- 0 Respostas
- 1320 Exibições
- Última mensagem por Pessoa Estranha

Dom Set 01, 2013 14:50
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.