por emanes » Qua Ago 22, 2012 09:08
Alguém pode me ajudar com a questão abaixo:
![\lim_{3}\frac{\sqrt[]{x}-9}{x-3} \lim_{3}\frac{\sqrt[]{x}-9}{x-3}](/latexrender/pictures/fa66b15957888f5dc7cd5e4fb62a956c.png)
Tentei resolver multiplicando o numerador e o denominador por
![\sqrt[]{x}+9 \sqrt[]{x}+9](/latexrender/pictures/00fccd864dccf4b857627fc2a4d9a72c.png)
mas não consegui.
Obrigado
-
emanes
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Ago 17, 2012 09:19
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: contabil
- Andamento: cursando
por e8group » Qua Ago 22, 2012 10:32
Perceba que não temos uma indeterminação " 0/0 " ,uma vez que o numerador é diferente que zero . Quanto a solução ,

"

"

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite raiz numerador
por Darkila » Qua Abr 27, 2016 15:49
- 3 Respostas
- 4490 Exibições
- Última mensagem por Ninno Nascimento

Seg Mai 02, 2016 20:50
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Com a raiz no numerador e denominador!!
por mih123 » Seg Ago 27, 2012 03:52
- 6 Respostas
- 5095 Exibições
- Última mensagem por mih123

Ter Ago 28, 2012 15:09
Cálculo: Limites, Derivadas e Integrais
-
- Limite para resolver com raíz no numerador e denominador
por jmoura » Sex Mar 23, 2012 23:20
- 2 Respostas
- 8899 Exibições
- Última mensagem por MarceloFantini

Sáb Mar 24, 2012 08:05
Cálculo: Limites, Derivadas e Integrais
-
- Limites com raiz no numerador
por liliars » Qua Jul 07, 2010 16:34
- 4 Respostas
- 12952 Exibições
- Última mensagem por elinesena

Sáb Nov 24, 2012 15:22
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES][ Indeterminação com Raiz no numerador]
por maurosilva7 » Qua Abr 22, 2015 19:42
- 2 Respostas
- 2954 Exibições
- Última mensagem por maurosilva7

Dom Jul 26, 2015 20:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.