• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área dentro de um octógono

Área dentro de um octógono

Mensagempor anfran1 » Dom Ago 19, 2012 12:06

Não estou conseguindo achar quais áreas devem ser somadas para chegar a resolução do seguinte problema:
Um cachorro foi preso por uma coleira de 3m na metade da parede de uma casa no formato de um octógono regular de lado 2m.
Qual é a área que esse cachorro tem para se movimentar?
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área dentro de um octógono

Mensagempor anfran1 » Dom Ago 11, 2013 13:30

Nossa faz quase um ano e ninguém conseguiu =/
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área dentro de um octógono

Mensagempor anfran1 » Dom Ago 11, 2013 13:31

P.s: não vale usar cálculo integral.
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área dentro de um octógono

Mensagempor anfran1 » Dom Nov 17, 2013 10:34

Nada ainda...
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.