• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Área do Triângulo]

[Área do Triângulo]

Mensagempor gustavowelp » Qui Ago 16, 2012 00:49

Olá! Boa noite!

Não sei como resolver esta questão. Se alguém puder me ajudar ficarei muito grato.

Qual a área, em km2, de um terreno triangular de vértices ABC sabendo que os ângulos ABC e CAB medem igualmente 35º e que a soma dos dois lados menores mede
20 km? Considere 0,94 como sendo o seno de 70º.

A resposta é 47

Muito obrigado
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: [Área do Triângulo]

Mensagempor Cleyson007 » Qui Ago 16, 2012 11:03

Bom dia Gustavo!

Temos que b + c = 20 Pelo fato dos ângulos serem iguais ----> b = c = 10

ângulo BÂC = 180º - 35º - 35º = 110º

S = b*c*sen110º/2 --->sen110º = sen(180º - 110º) = sen70º

S = 10*10*sen70º/2

S = 100*0,94/2

S = 47 km²

Espero ter ajudado.

Comente qualquer dúvida :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [Área do Triângulo]

Mensagempor gustavowelp » Sex Ago 17, 2012 10:39

Olá Cleyson!

Não entendi isto: sen110º = sen(180º - 110º) = sen70º

Também não entendi a fórmula da área: é lado * lado * sen(xº) / 2 ? Isto ?

Obrigado!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: [Área do Triângulo]

Mensagempor Cleyson007 » Sex Ago 17, 2012 17:16

Boa tarde Gustavo!

Em resposta às suas dúvidas:

1ª) Tente entender pela imagem que fiz! (Em anexo)

2ª) A área de um triângulo pode ser obtida sabendo-se os lados dele. Sendo a e b dois lados quaisquer de um triângulo, e "alfa" o ângulo entre eles, temos que a área é:

At = a . b . sen (alfa) / 2 (Fonte: http://pt.wikipedia.org/wiki/Tri%C3%A2ngulo )

Comente qualquer dúvida.

Abraço,
Cleyson007
Anexos
Círculo Trigonométrico.png
Círculo Trigonométrico
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [Área do Triângulo]

Mensagempor gustavowelp » Sáb Ago 18, 2012 09:35

Muito obrigado Cleyson!!!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}