• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função de uma variavel (cartesiana, paramétrica e implícita)

Função de uma variavel (cartesiana, paramétrica e implícita)

Mensagempor rhmgh » Dom Ago 12, 2012 21:20

Boa noite galera! será que alguém consegue me ajudar?

Achar a função na forma implícita e na forma cartesiana da função

x=3*cost
y=4*sent

cost=x/3
sent=y/4

cos²t+sen²t=1

(x/3)² + (y/4)² = 1

x²/9 + y²/16 = 1


como que eu avanço? travei nessa parte e não consigo resolver! :D
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Função de uma variavel (cartesiana, paramétrica e implíc

Mensagempor MarceloFantini » Seg Ago 13, 2012 08:43

A forma cartesiana você já encontrou:

\frac{x^2}{9} + \frac{y^2}{16} = 1.

A forma implícita é F(x,y)=0, então tome

F(x,y) = \frac{x^2}{9} + \frac{y^2}{16} -1 = 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função de uma variavel (cartesiana, paramétrica e implíc

Mensagempor rhmgh » Qua Ago 15, 2012 09:30

MarceloFantini escreveu:A forma cartesiana você já encontrou:

\frac{x^2}{9} + \frac{y^2}{16} = 1.

A forma implícita é F(x,y)=0, então tome

F(x,y) = \frac{x^2}{9} + \frac{y^2}{16} -1 = 0.



ele falo que não da pra fazer assim porque "(x/3)² + (y/4)² = 1" é uma elipse 3 e 4 ai tem que pegar uma função dentro dentro dela e depois isolar o y, mais mesmo assim eu ainda não conseguir ver essa função, consegue me ajudar?

ontem eu tive aula com o prof que deu esse exercício mais ele não quis da a resolução nem a resposta, mas deu essa dica para tentar resolver ...
rhmgh
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Jun 10, 2012 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Função de uma variavel (cartesiana, paramétrica e implíc

Mensagempor MarceloFantini » Qua Ago 15, 2012 10:27

Não entendo o que ele quer dizer com "pegar uma função dentro dela". É uma elipse sim, que na forma paramétrica é x=3 \cos t, y= 4 \, \textrm{sen} \, t, na forma cartesiana \frac{x^2}{9} + \frac{y^2}{16} = 1 e na forma implícita F(x,y) = \frac{x^2}{9} + \frac{y^2}{16} -1 = 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.