• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[volume do cubo] Soma dos volumes das infinitas caixas

[volume do cubo] Soma dos volumes das infinitas caixas

Mensagempor Priscilamoraes307 » Sex Ago 10, 2012 23:14

Considere a seguinte figura que mostra uma sequência de quadrados, em que o lado L do primeiro é o dobro do lado do segundo; o lado do segundo é o dobro do lado do terceiro e assim indefinidamente.
Esses quadrados representam as bases de caixas retangulares, todas com 1 m de altura.

Nessas condições, é CORRETO afirmar que a soma S dos volumes de todas essas infinitas caixas é
A) infinita.
B) um número finito, porém muito grande.
C) um número entre 2L2 e 3L2.
D) um número entre L2 e 2L2.

image002.jpg
image002.jpg (5.14 KiB) Exibido 2060 vezes
Editado pela última vez por Priscilamoraes307 em Sáb Ago 11, 2012 16:02, em um total de 1 vez.
Priscilamoraes307
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jun 01, 2012 20:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [volume do cubo] Somas do volumes das infinitas caixas

Mensagempor MarceloFantini » Sáb Ago 11, 2012 00:28

Sim, você deve.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [volume do cubo] Somas do volumes das infinitas caixas

Mensagempor Russman » Sáb Ago 11, 2012 16:08

O volume da n-ésima caixa é dado por

V_n=L_n^3.

Para n=1 temos L_1=L. Para n=2, temos L_2 = L/2. Para n=3, temos L_3 = (L/2)/2 = L/4. Assim, sucessivamente. Portanto, podemos supor que

L_n = L\left( \frac{1}{2}\right)^{(n-1)}

e, disso,

V_n = L^3\left( \frac{1}{8}\right)^{(n-1)}.

Esta é uma P.G. de razão 1/8<1 e primeiro termo L^3. Logo, efetuando a soma infinita de seus termos, obtemos

S = \frac{L^3}{1-\frac{1}{8}} = \frac{8}{7}L^3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}