• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função]Questão da EPCAR

[Função]Questão da EPCAR

Mensagempor -daniel15asv » Sex Ago 03, 2012 16:28

Lucas e Mateus são apaixonados por futebol. Eles praticam futebol no quintal de casa, que é totalmente plano e possui uma rede de 3 m de altura.

Numa brincadeira, Mateus posiciona a bola a 4 m da rede e Lucas varia sua posição em lado oposto à rede, aproximando-se ou afastando-se dela, conservando uma mesma linha reta coma bola, perpendicular à rede.
Mateus lança a bola para Lucas co um único toque na bola, sem que atinja o chão, sem tocar a rede.

Considere um plano cartesiano em que:
- cada lançamento realizado por Mateus é descrito uma trajetória parabólica;
- Lucas e o ponto de partida da bola estão no eixo \leftrightarrow
Ox (A SETA É EM CIMA DO Ox)
- a posição da bola é um ponto (x,y) desse plano, onde y=f(x) é a altura atingida pela bola, em metros, em relação ao chão.

Assinale, dentre as alternativas abaixo, aquela que tem a lei de uma função f que satisfaz às condições estabelecidas na brincadeira de Lucas e Mateus.

a) f(x) = - x²/8 + 2 b) -x²/16 + x/4+15/4

c) f(x)= -3x²/16 + 3 d) -0,1x² + 0,2x + 4,8

Veja se estou correto para fazer recurso?

Resolução: ANULADA
Sem perda de generalidade, considere que Mateus está situado num ponto x m= que é a menor raiz da
parábola descrita pela bola. Para que encontremos uma equação de parábola que satisfaça as informações
do problema, o valor numérico para x m= + 4 deve ser no mínimo igual a 3, de forma que a bola
ultrapasse a rede.Como não foi dito em que posição está a origem do sistema de eixos, qualquer parábola que atenda à
condição supracitada satisfaz ao problema. Portanto, a única equação que NÃO satisfaz ao problema é f(x)= -x²/8 + 2.
-daniel15asv
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Ago 02, 2012 19:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Função]Questão da EPCAR

Mensagempor -daniel15asv » Sáb Ago 04, 2012 15:19

Me ajudeem Porfavor
-daniel15asv
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Ago 02, 2012 19:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?