• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ITA - ângulos , altura h e H

ITA - ângulos , altura h e H

Mensagempor PeterHiggs » Ter Jul 31, 2012 17:36

Olá pessoal, estou com uma dúvida nessa questão do ITA, se eu não me engano é de 1995, mas não tenho lá muita certeza!

(ITA) - Um dispositivo colocado no solo a uma distância d de uma torre dispara dois projéteis em trajetórias retilíneas. O primeiro, lançado sob um ângulo \theta ? (0,\frac{\pi}{4}), atinge a torre a uma altura h. Se o segundo, disparado sob um ângulo 2\theta, atinge-a a uma altura H, a relação entre as duas alturas será:


a) H = \frac{2hd^2}{(d^2-h^2)}

b) H = \frac{2hd^2}{(d^2+h)}

c) H = \frac{2hd^2}{(d^2-h)}

d) H = \frac{2hd^2}{(d^2+h^2)}

e) H = \frac{hd^2}{(d^2+h)}

Bom, tentei resolver aqui, mas acabei emperrando. Vou colocar um desenho pra facilitar o entendimento do meu raciocínio:

ITA - ângulo.png
ITA - ângulo.png (4.47 KiB) Exibido 6217 vezes


x^2 = d^2 + H^2
x = \sqrt{d^2+H^2}

e

y^2 = d^2 + h^2
y = \sqrt{d^2+h^2}

Além disso:

sen\theta=\frac{h}{y} = \frac{h}{\sqrt{d^2+h^2}}

cos\theta = \frac{d}{y}=\frac{d}{\sqrt{d^2+h^2}}

Por fim:

sen 2\theta = \frac{H}{x} >>>>>>>>>>>> 2sen\theta cos\theta = \frac{H}{\sqrt{d^2+H^2}}

Aí, eu substituo os valores de sen\theta e cos\theta, entretanto ,não tenho como isolar o H. Ficaria assim:

\frac{H}{\sqrt{d^2+H^2}} = \frac{2hd}{(d^2+h^2)}

Não consigo isolar o H, entendem. Alguém pode ajudar?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: ITA - ângulos , altura h e H

Mensagempor Russman » Ter Jul 31, 2012 18:10

Você procedeu de maneira correta.

Note que

\frac{H}{\sqrt{d^2 + H^2}} = \frac{2hd}{d^2+h^2}\Rightarrow \frac{H(d^2+h^2)}{2hd}=\sqrt{d^2+H^2}\Rightarrow d^2+H^2 = \frac{H^2(d^2+h^2)^2}{4h^2d^2}

\Rightarrow 4h^2d^4 + 4H^2h^2d^2 = H^2(d^2+h^2)^2 \Rightarrow H^2(-4h^2d^2 + d^4 +h^4+2h^2d^2) = 4h^2d^4

\Rightarrow H^2 =  \frac{4h^2d^4}{(d^2-h^2)^2}\Rightarrow H=\frac{2hd^2}{\left |d^2-h^2  \right |}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: ITA - ângulos , altura h e H

Mensagempor PeterHiggs » Qua Ago 01, 2012 14:49

Opa, é verdade, nossa eu sempre comete esses erros bobos, sempre.

Obrigado Russmann !
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}