por Danilo » Sáb Jul 28, 2012 12:45
Mostrar, para n ímpar positivo, que

Bom, eu tenho '' a prova'' em um livro, só que eu não entendi a resolução. O exercício é parecido com um outro que postei aqui.
''De fato, como n é ímpar podemos escrever

e aplicar a fórmula do item anterior, ou seja,

, colocando -y no lugar de y.
Vejamos:

Bom, eu entendi que o cara substituiu y por - y entao x - (-y) tem de ficar positivo. Ok, mas nessa parte

eu não entendo por que no final fica

sendo que

para mim é igual a

. Eu sei que se for par o número sempre será positivo. Mas quando for ímpar (que é o caso, não). Estou errado? Ou é o livro? Ou entendi errado? Grato desde já !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Sáb Jul 28, 2012 13:38
Note que

é ímpar, então ele é da forma

. Portanto,

, mostrando que é par. Assim,

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Danilo » Sáb Jul 28, 2012 14:03
MarceloFantini escreveu:Note que

é ímpar, então ele é da forma

. Portanto,

, mostrando que é par. Assim,

.
Obrigado, Marcelo !

-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- fatoração de polinomios
por theSinister » Ter Mai 10, 2011 20:23
- 1 Respostas
- 1681 Exibições
- Última mensagem por MarceloFantini

Ter Mai 10, 2011 21:33
Álgebra Elementar
-
- [Polinomios] Fatoração
por carvalhothg » Ter Set 20, 2011 18:08
- 3 Respostas
- 1824 Exibições
- Última mensagem por MarceloFantini

Ter Set 20, 2011 19:19
Polinômios
-
- [fatoração de polinômios]
por jvabatista » Qua Abr 18, 2012 01:42
- 7 Respostas
- 3962 Exibições
- Última mensagem por DanielFerreira

Dom Abr 29, 2012 00:42
Polinômios
-
- Fatoração de polinômios
por Danilo » Sex Ago 16, 2013 16:51
- 3 Respostas
- 2208 Exibições
- Última mensagem por Danilo

Sex Ago 16, 2013 18:16
Polinômios
-
- Fatoração de Polinômios
por matheus_frs1 » Sex Mar 18, 2016 22:49
- 1 Respostas
- 1876 Exibições
- Última mensagem por DanielFerreira

Sáb Jul 16, 2016 23:08
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.