por hygorvv » Qua Jul 25, 2012 12:45
Olá galera, bom dia.
Um paralelogramo de vértices A, B, C e D, tem lados AB e CD paralelos à reta de equação r: X=(0,0,0)+k(3,4,5) e os outros dois paralelos ao plano ? : x+y+3z=0. Conhecendo os vértices A e D, determine os vértices B e C. Dados: A=(0,0,0) e D=(1,1,1).
Resposta:
B=(15/22 , 20/22 , 25/22) e C=(7/22 , 2/22 , -3/22)
Achei estranho, pois se o lado AD pertence ao plano ?;, o vetor AD também deveria pertencer (AD // ?;), o que na realidade não acontece. (

, 1.1+1.1+3.1 ?0).
Estou pensando de forma errônea?
Agradeço desde já.
-
hygorvv
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 05, 2012 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Qua Jul 25, 2012 18:17
hygorvv escreveu:Um paralelogramo de vértices A, B, C e D, tem lados AB e CD paralelos à reta de equação r: X=(0,0,0)+k(3,4,5) e os outros dois paralelos ao plano ? : x+y+3z=0. Conhecendo os vértices A e D, determine os vértices B e C. Dados: A=(0,0,0) e D=(1,1,1).
Resposta:
B=(15/22 , 20/22 , 25/22) e C=(7/22 , 2/22 , -3/22)
hygorvv escreveu:Achei estranho, pois se o lado AD pertence ao plano ?;, o vetor AD também deveria pertencer (AD // ?;), o que na realidade não acontece. (

, 1.1+1.1+3.1 ?0).
Estou pensando de forma errônea?
Sim, você está pensando de forma equivocada.
Primeiro, o segmento AD não pertence ao plano. Ele é apenas paralelo ao plano. Além disso, também não faz sentido dizer que um vetor "pertence" a um plano. No máximo, você poderia dizer que alguns dos representantes do vetor pertencem ao plano.
Há ainda outro equívoco. Você está considerando que o paralelogramo tem necessariamente o formato ABCD (vide a figura 1). Mas nada impede que ele tenha o formato ABDC (vide a figura 2).

- Figura 1 - Paralelogramo ABCD.
- figura1.png (2.47 KiB) Exibido 5700 vezes

- Figura 2 - Paralelogramo ABDC.
- figura2.png (1.91 KiB) Exibido 5700 vezes
Agora tente concluir o exercício considerando a figura 2.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por hygorvv » Qui Jul 26, 2012 14:36
Colega, na verdade, houve um abuso de linguagem por minha parte. Repare que eu coloquei entre parenteses que o vetor AD deveria ser paralelo ao plano ?.
Agora eu consegui, realmente o problema era na forma como eu estava imaginando o paralelogramo (distribuição dos pontos).
Segue a resolução, qualquer crítica, fiquem a vontade.

Repare que o ponto A ? r e A ? ?.
Sendo assim, o vetor

é paralelo ao plano

.
Sendo

, temos a seguinte relação

(i)
Repare ainda que

, donde tiramos:



Como o lado AB é paralelo a reta r, o vetor

também é paralelo a r, sendo assim, temos a relação:

, sendo t um escalar (o vetor

é paralelo ao vetor diretor da reta), daí:



Substituindo em cima, temos:



Substituindo em (i), obtemos:



Logo,

e

Muito obrigado pela atenção e dica LuizAquino.
Editado pela última vez por
hygorvv em Qui Jul 26, 2012 15:50, em um total de 1 vez.
-
hygorvv
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 05, 2012 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Qui Jul 26, 2012 15:24
hygorvv escreveu:Repare que o ponto A ? r e A ? ?.
Sendo assim, o vetor

é paralelo ao plano

.
Sendo

, temos a seguinte relação

(i)
Você escreveu que como

e

, temos que

é paralelo a

.
Entretanto, o fato de

ser paralelo a

já é um dado do exercício!
Na verdade, usando o fato de

e

ser paralelo a

, a conclusão que você deveria tirar é que

. Daí sim, fazendo

, como este ponto está no plano, temos que:

Perceba ainda que da forma como você escreveu você cometeu o erro conceitual de "substituir" na equação do plano as coordenadas de um vetor. Entretanto, na equação do plano nós podemos substituir as coordenadas de um ponto. Cuidado para não confundir os conceitos!
Ok.
Ok.
Editado pela última vez por
LuizAquino em Qui Jul 26, 2012 19:06, em um total de 1 vez.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por hygorvv » Qui Jul 26, 2012 15:50
Perceba ainda que da forma como você escreveu você cometeu o erro conceitual de "substituir" na equação do plano as coordenadas de um vetor. Entretanto, na equação do plano nós podemos substituir as coordenadas de um ponto. Cuidado para não confundir os conceitos!
Na verdade, foi a forma como eu escrevi mesmo. Eu conheço de onde saiu a relação (posição relativa de reta e plano). Agradeço pela ajuda e correção dos erros de digitação.
Até breve.
-
hygorvv
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 05, 2012 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- posicao relativa de retas e planos
por Livingstone » Sex Dez 12, 2014 15:31
- 0 Respostas
- 1429 Exibições
- Última mensagem por Livingstone

Sex Dez 12, 2014 15:31
Geometria Analítica
-
- [Posição relativa de retas e planos - Geometria Analítica]
por Gustavo195 » Dom Abr 07, 2013 16:34
- 0 Respostas
- 2485 Exibições
- Última mensagem por Gustavo195

Dom Abr 07, 2013 16:34
Geometria Analítica
-
- Posição relativa de planos
por -civil- » Qui Jul 07, 2011 23:26
- 1 Respostas
- 1642 Exibições
- Última mensagem por LuizAquino

Sex Jul 08, 2011 11:22
Geometria Analítica
-
- posição relativa entre os planos
por Ana Maria da Silva » Ter Jun 04, 2013 10:38
- 2 Respostas
- 3397 Exibições
- Última mensagem por Ana Maria da Silva

Ter Jun 04, 2013 20:31
Geometria Analítica
-
- posição relativa entre as retas r e pi
por Ana Maria da Silva » Qua Jun 05, 2013 11:55
- 0 Respostas
- 1271 Exibições
- Última mensagem por Ana Maria da Silva

Qua Jun 05, 2013 11:55
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.