• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do lugar geométrico

Equação do lugar geométrico

Mensagempor hygorvv » Qua Jul 25, 2012 13:12

Olá galera, bom dia.

Obtenha equações do lugar geométrico dos pontos médios dos segmentos que se apoiam nas retas r e s e interprete geometricamente, no caso em que:
r: X=(1,2,2)+\lambda(0,1,1) e s: X=(0,0,0)+\mu(1,0,1).

Resposta: 2x+2y-2z-1=0

Galera, interpretar geometricamente eu até consigo, não consigo é obter os pontos médios para tentar tirar alguma conclusão.

Agradeço desde já.
hygorvv
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Jun 05, 2012 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Equação do lugar geométrico

Mensagempor LuizAquino » Qua Jul 25, 2012 21:26

hygorvv escreveu:Obtenha equações do lugar geométrico dos pontos médios dos segmentos que se apoiam nas retas r e s e interprete geometricamente, no caso em que:
r: X=(1,2,2)+\lambda(0,1,1) e s: X=(0,0,0)+\mu(1,0,1).

Resposta: 2x+2y-2z-1=0

Galera, interpretar geometricamente eu até consigo, não consigo é obter os pontos médios para tentar tirar alguma conclusão.


Cada segmento "se apoia" nas retas r e s. Em outras palavras, cada segmento tem um dos extremo na reta r e o outro na reta s.

Sejam P e Q os extremos de um segmento qualquer, de tal modo que P está em r e Q está em s.

Como P está em r, existe um escalar a tal que P = (1, 2, 2) + a(0, 1, 1). Por outro lado, como Q está em s, existe um escalar b tal que Q = (0, 0, 0) + b(1, 0, 1).

Desse modo, o ponto médio entre P e Q será dado por:

M = \frac{P+Q}{2} \implies M = \left(\frac{1}{2},\,1,\,1\right) + a\left(0,\,\frac{1}{2},\,\frac{1}{2}\right) + b\left(\frac{1}{2},\,0,\,\frac{1}{2}\right)

Agora tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equação do lugar geométrico

Mensagempor hygorvv » Qui Jul 26, 2012 13:47

MUITO obrigado LuizAquino.

Na verdade, você respondeu a questão né, deu a equação vetorial do plano, o que fiz foi encontrar a geral.

Obrigado.
hygorvv
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Jun 05, 2012 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.