• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fórmula Fechada

Fórmula Fechada

Mensagempor Russman » Sex Jul 20, 2012 12:36

Eu procurei sem sucesso uma fórmula fechada para a derivada n-ésima total de um produto de N funções! Isto é, eu gostaria de encontrar uma fórmula fechada para a n-ésima derivada de :

\frac{\mathrm{d}^{n} }{\mathrm{d} x^{n}}\left [f_{1}(x).f_{2}(x).\cdot \cdot \cdot f_{N}(x)  \right ]=\frac{\mathrm{d}^{n} }{\mathrm{d} x^{n}}\prod_{j=1}^{N}f_{i}(x) = ?

Obrigado pela parceria.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Fórmula Fechada

Mensagempor e8group » Sex Jul 20, 2012 16:47

Russman . Não sei se vai te ajudar ,mas não seria isto ?

\frac{\mathrm{d^n }} {\mathrm{d} x^n}  \prod_{j=1}^{n} f_i(x) = \prod_{j=1}^{n}\left(f_i f_{(i+1)} \right )^{(n)} ,onde :

\left(f_i f_{(i+1)} \right )^{(n)} =\sum_{i=0}^{n}\binom{n}{i} f_i^{(n-i)}f_{(i+1)}^i

Uso da notação (n) significa derivar n-vezes .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fórmula Fechada

Mensagempor Russman » Sex Jul 20, 2012 22:49

Obrigado, Shantiago. Mas eu acredito que a fórmula não esteja certa. ;x
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.