• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ajuda em potenciação

ajuda em potenciação

Mensagempor Bielto » Qui Jul 19, 2012 19:29

Estou tentando resolver este exercício mas, não consegui terminá-lo

\left(\frac{16ab^4}{-8a^2b^7}\right)^-^3 =

Eu cheguei a isso:

\left(\frac{-48a^-^3b^1^2^}{-29a^-^6b^-^2^1}\right)

Não consegui resolver o restante.


Resposta: -\frac{a^2b^9}{8}
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: ajuda em potenciação

Mensagempor MarceloFantini » Sex Jul 20, 2012 02:24

Bielto, quando temos expressões em parênteses resolvemos primeiro o que está dentro do parênteses e somente depois aplicamos outras operações. Note que \fac{16}{-8} = -2, \frac{a}{a^2} = a^{-1} e \frac{b^4}{b^7} = b^{-3}. Assim,

\frac{16ab^4}{-8a^2b^7} = -2 a^{-1} b^{-3}.

Elevando tudo a -3, temos

\left( \frac{16ab^4}{-8a^2b^7} \right)^{-3} = (-2a^{-1}b^{-3})^{-3} = (-2)^{-3} a^{(-1)(-3)} b^{(-3)(-3)}
= (-8)^{-1} a^3 b^9 = - \frac{a^3b^9}{8}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: ajuda em potenciação

Mensagempor Bielto » Sex Jul 20, 2012 12:03

Marcelo, antes de fazer qualquer operação não seria melhor aplicar a propriedade {a}^{-}^{1} = \frac{1}{a} ?

Tipo, pegar \left(\frac{16ab^4}{-8a^2b^7}\right)^-^3 e usar a propriedade para que o 3 fique positivo, daí ficará \left(\frac{-8a^2b^7}{16ab^4}\right)^3

O único problema será subtrair \frac{-8}{16}
Bielto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Qui Jul 12, 2012 15:07
Formação Escolar: ENSINO MÉDIO
Área/Curso: Médio
Andamento: formado

Re: ajuda em potenciação

Mensagempor MarceloFantini » Sex Jul 20, 2012 13:42

É uma questão de gosto. Você não irá subtrair nada, apenas simplificar: note que se \frac{16}{-8} = -2, então \frac{-8}{16} = \frac{-1}{2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59