por FrIcaro » Seg Ago 10, 2009 16:11
Olá!
Estou com problemas para visualizar a solução desta questão.
Questão:
O valor de Z:

(Não consigui usar o LATEX para a divisão)
Bom, eu, inicialmente, resolvi a divisão do

por

, mutiplicando pela conjugado do denominador. Deu a seguinte resposta:
![Z'''= [(\sqrt{3} + 1) + (\sqrt{3} - 1)i / 2]^{(200)} Z'''= [(\sqrt{3} + 1) + (\sqrt{3} - 1)i / 2]^{(200)}](/latexrender/pictures/2c78e0f7df37543e99d2d6670317b89e.png)
. Tudo bem até aí. Entretanto, quando fui passar para a potência, pensando em usar Moivre, percebi que o ângulo não era notável e, para piorar, o expoente era muito alto. Eu pensei em decompor o expoente, mas, mesmo assim, eu não sei como encontrar o valor do argumento através do Seno e do Cosseno. Alguém me dá uma orientação na questão?
-
FrIcaro
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Ago 10, 2009 15:34
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino Médio
- Andamento: cursando
por Felipe Schucman » Qui Ago 13, 2009 21:14
Bom Dia,
Vou explicar resumidamente como deve ser feito caso fique alguma duvida eu faço....
Você tem que passar o numero para forma trigonométrica pois na forma trigonométrica tem um maneira de se fazer a ponteciação sem que se tenha que multiplicar as 200 vezes...existe para isso uma formula:

sendo que no caso

é o angulo da forma trigonométrica e r é o modulo.
Espero ter ajudado! Qualquer duvida sobre a passagem para forma trigonométrica ou a explicação a cima é só falar...
Um abraço!
-
Felipe Schucman
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Ter Jul 28, 2009 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia e Direito
- Andamento: cursando
por Elcioschin » Sáb Ago 15, 2009 20:33
Complementando a resposta do Felipe:
Numerador ----> (V3 - i)^200 = {2*[V3/2 - (1/2)*i]}^200 = (2^200)*[cos(11*pi/6) + i*sen(11*pi/6)]^200
(V3 - i)^200 = (2^200)*[cos(200*11*pi/6) + i*sen(200*11*pi/6)] = (2^200)*[cos(366*pi + 2*pi/3) + i*sen(366*pi + 2*pi/3)]
(V3 - i)^200 = (2^200)*[cos(2*pi/3) + i*sen(2*pi/3)] = (2^200)*(- 1/2 + i*V3/2)
Denominador ----> (1 - i)^200 = [V2*(V2/2 - i*V2/2)]^200 = [(V2)^200]*[cos(7*pi/4) + i*sen(7*pi/4]^200
(1 - i)^200 = (2^100)*[cos(200*7*pi/4) + i*sen(200*7*pi/4)]^200 = (2^100)*[cos(350*pi) + i*sen(350*pi)]
(1 - i)^200 = (2^100)*(1 + 0*i) -----> (1 - i)^200 = 2^100
Dividindo o numerador pelo denomindor -----> Z = (2^100)*(- 1/2 + i*V3/2) ----> Z = (2^99)*(- 1 + i*V3)
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Série de Potencias Complexos
por Russman » Qui Out 04, 2012 21:24
- 2 Respostas
- 2110 Exibições
- Última mensagem por Russman

Qui Out 04, 2012 22:20
Números Complexos
-
- Série de Potências Complexos [2]
por Russman » Qui Out 04, 2012 23:21
- 1 Respostas
- 1896 Exibições
- Última mensagem por young_jedi

Sex Out 05, 2012 11:39
Números Complexos
-
- Números complexos módulo de dois números complexos important
por elisamaria » Qui Jun 11, 2015 16:56
- 1 Respostas
- 16133 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:20
Números Complexos
-
- Numeros complexos!
por Estela » Seg Mar 17, 2008 00:57
- 7 Respostas
- 12253 Exibições
- Última mensagem por andegledson

Seg Nov 02, 2009 21:41
Números Complexos
-
- Números Complexos
por michelle » Dom Ago 31, 2008 15:35
- 3 Respostas
- 9438 Exibições
- Última mensagem por admin

Dom Ago 31, 2008 21:00
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.