• Anúncio Global
    Respostas
    Exibições
    Última mensagem

QUESTÃO DE GEOMETRIA ANALÍTICA (DUVIDA!!!)

QUESTÃO DE GEOMETRIA ANALÍTICA (DUVIDA!!!)

Mensagempor hudeslan » Qui Ago 13, 2009 18:15

SABENDO QUE O PONTO P SOBRE A RETA 3X-2Y+3=0 É EQUIDISTANTE DA ORIGEM E DO PONTO A(4,2), DETERMINAR A DISTÂNCIA DE P À ORIGEM.
A)2 RAIZ QUADRADA DE 3
B)3 RAIZ QUADRADA DE 2
C)RAIZ QUADRADA DE 10
D)RAIZ QUADRADA DE 13

LI EM VÁRIOS LIVROS DE MATEMÁTICA A ÚNICA FORMULA SEMELHANTE A QUESTÃO FOI USADA SEM SUCESSO NÃO SEI SE REALMENTE É ESSA AX+BX+C/RAIZ QUADRADA DE A AO QUADRADO + B AO QUADRADO. ENCONTREI RAIZ QUADRADA DE 13 PORÉM NÃO É A RESPOSTA CORRETA.
FICO NO AGUARDO.
hudeslan
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 05, 2009 20:00
Formação Escolar: GRADUAÇÃO
Área/Curso: administração
Andamento: cursando

Re: QUESTÃO DE GEOMETRIA ANALÍTICA (DUVIDA!!!)

Mensagempor Felipe Schucman » Qui Ago 13, 2009 19:24

Boa Tarde,


Utilizando a fórmula da ponto a ponto:

P(x,y)
D(Origem,P) = raiz[(x - 0)^2 + (Y - 0)^2]
D = raiz(x^2+y^2)

D(A,P) = raiz[(x- 4)^2 + ( Y - 2)^2]
D = raiz[x^2 - 8x + 16 + y^2 - 4y + 4]= raiz[x^2 + y^2 - 8x - 4y + 20]

igualando as distancias, temos:

raiz[x^2 + y^2 - 8x - 4y + 20] = raiz(x^2+y^2) ---> elevamos tudo ao quadrado anulando as raizes...

x^2 + y^2 - 8x - 4y + 20 = x^2+y^2 ---> 8x + 4y -20 = 0

Essa reta contém os possiveis pontos equidistantes a origem e ao ponto A, sendo assim o cruzamento dela com a reta 3X-2Y+3=0, que também contém o ponto, resultará no ponto P:

3X-2Y+3=0 ---> x = (2y -3)3

8x + 4y -20 = 0, substituindo o X ----> 8(2y - 3)/3 + 4y - 20 = 0 ---> 16y/3 + 12y/3 = 28 ---> 28y/3 = 28 ---> y = 3

consequentemente x = 1(substituindo y em uma das retas):

P(1,3)

Então distancia da origem até o ponto P:

D(O,P) = raiz[(1 - 0)^2 + (3 - 0)^2] = raiz[1+9] = raiz[10].

Resposta C.

Se você achar mais facil é possivel a resolução geometricamente, mas esta ai a analítica.

Sobre seu erro, ocorre que essa formula que você citou é a distancia entre ponto e reta, mas na analitica é sempre a distancia mais curta que a formulá mostrará(fara como se você fizesse uma reta entre os dois pontos perpendicular a outra reta), e nada no exercicio diz que é a distancia mais curta dos pontos até a reta, então você não pode supor isso.

Espero ter ajudado!

P.S: Desculpe as fórmulas escritas, é que tenha dificuldade de usar o editor. Mas qualquer duvida que tiver é só perguntar.

Um abraço!
Felipe Schucman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Ter Jul 28, 2009 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia e Direito
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}