• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Atleta em pista

Sub-seção para materiais das disciplinas relacionadas ao Instituto de Física.
Utilize a área de pedidos para outros ou caso a sub-seção da disciplina ainda não possua material.

Provas aplicadas, notas de aulas, listas de exercícios, gabaritos, bibliografias etc.
Regras do fórum
O objetivo desta seção é compartilhar alguns materiais dos próprios alunos do IME-USP, formandos e formados, das disciplinas do curso de Licenciatura em Matemática.

Dentre os materiais, organizados por disciplinas, você encontrará:
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos e bibliografias, além de outros materiais indicados ou fornecidos pelos próprios professores.
A fonte e os créditos do autor devem ser citados sempre que disponíveis.

O intuito deste compartilhamento é favorecer um estudo complementar.

Utilize a seção de pedidos para outros ou caso a sub-seção ainda não possua material.
A pesquisa do fórum facilita a localização de materiais e outros assuntos já publicados.

Atleta em pista

Mensagempor Cleyson007 » Qua Jul 18, 2012 10:24

Bom dia a todos!

Conside o treinamento de um atleta para um corrida em um pista de 1500m de comprimento. Suponha que ele vá de um extremo ao outro inúmeras vezes mudando o sentido de seu movimento somente quando atinge um dos extremos. Suponha também que em t = t0 ele inicie seu movimento de O (origem da pista de atletismo), que em t = t1 ele atinja pela primeira vez o ponto F (final da pista), que em t = t2 ele atinja o ponto O novamente e assim sucessivamente, de modo que em t = t2n-1, n = 1,2,..., ele se encontre em F, pela n-ésima vez, e em t = t2n-2, ele se encontre em O, pela n-ésima vez.

a) Calcule o deslocamento do atleta nos intervalos: [t0,t1], [t1,t2], [t0,t2], [t0,t7] e [t1,t8].

Vou postar minha resolução abaixo para verem se está correto.

Até logo.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Atleta em pista

Mensagempor Cleyson007 » Qua Jul 18, 2012 11:54

Amigos, resolvi da seguinte forma:

a) Deslocamento no intervalo [t0,t1]:

O atleta inicia em O (origem da pista) no tempo t0 e chega em F (final da pista) no instante t1. Logo, 1500m.

Deslocamento no intervalo [t1,t2]:

O atleta parte de F (final da pista) e volta para O (origem da pista). Logo, -1500m.?

Deslocamento no intervalo [t0,t2]:

O atleta percorre os 1500m do instante [t0,t1] mais os 1500m do instante [t1,t2]. Logo, 3000m.

Deslocamento nos intervalos [t0,t7] e [t1,t8]:

--> Qual a maneira mais fácil de encontrar os deslocamentos em questão?

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Atleta em pista

Mensagempor Arkanus Darondra » Qua Jul 18, 2012 13:08

Cleyson007 escreveu:Deslocamento no intervalo [t0,t1]:

O atleta inicia em O (origem da pista) no tempo t0 e chega em F (final da pista) no instante t1. Logo, 1500m.

Certo.
Cleyson007 escreveu:Deslocamento no intervalo [t1,t2]:

O atleta parte de F (final da pista) e volta para O (origem da pista). Logo, -1500m.?

Certo. Uma vez que o deslocamento depende da orientação da trajetória e o atleta está indo contra ela, seu deslocamento será negativo.
Cleyson007 escreveu:Deslocamento no intervalo [t0,t2]:

O atleta percorre os 1500m do instante [t0,t1] mais os 1500m do instante [t1,t2]. Logo, 3000m.

Errado. Isso seria a distância percorrida.
Cleyson007 escreveu:--> Qual a maneira mais fácil de encontrar os deslocamentos em questão?

Sendo t_x: Você deve ter notado que quando x é par s = 0 e quando x é ímpar s = 1500m.
Como o deslocamento depende apenas dos espaços inicial e final, basta que você faça: \Delta S = s' - s_0
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Atleta em pista

Mensagempor Cleyson007 » Qua Jul 18, 2012 17:09

Boa tarde Arkanus Darondra!

Obrigado por ajudar! Refiz. Por favor veja se está correto, ok?

Deslocamento no intervalo [t0,t2]:

Será 0m? Estou pensando que o atleta correu os 1500m instante [t0,t1] e retornou ao ponto de origem O.

Deslocamento nos intervalos [t0,t7]:

1500m --> (Final: 1500m - Inicial 0m)

Deslocamento no intervalo [t1,t8]:

0m (em t8) - 1500m (em t1) = -1500m

Por favor me ajude com esse:

b) Calcule o deslocamento do atleta no intervalo [tn,tn+n']; discuta separadamente os casos em que n' é par e n' é ímpar.

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Atleta em pista

Mensagempor Cleyson007 » Qui Jul 19, 2012 09:33

Outra dúvida:

Qual a quantidade de vezes em que o atlta deverá percorrer a pista (mover de um extremo ao outro) para que tenha percorrido a distância de 42Km?

Posso resolver assim? --> 1,5km (x) = 42Km <--> x = 28 vezes

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Atleta em pista

Mensagempor Arkanus Darondra » Qui Jul 19, 2012 14:27

Os itens a e "c" estão corretos.

Quanto ao item b, ainda não tenho a resposta porque o item não diz que posso analisar se n é par ou ímpar (apenas n'). Assim que tiver, eu posto aqui caso ninguém tenha respondido.

Até agora, fiz assim:

n' par)
n par ou ímpar: \Delta S = 0

n' ímpar)
n par: \Delta S = 1500m
n ímpar: \Delta S = - 1500m

Ou:

n' par)
\Delta S = 0
n' ímpar)
\Delta S \neq 0

Não acho que esteja correto, pois no primeiro caso eu também analisei os casos em que n é par e/ou ímpar; e no segundo, não calculei o deslocamento para n' ímpar.

Se alguém souber como fazer, poste aqui.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Física

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?