• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria analitica

Geometria analitica

Mensagempor angelmix » Ter Jul 17, 2012 17:52

Alguem pode me ajudar nesta questão
Questão 2. Seja O = (0, 0) a origem do sistema de coordenadas.

a)Determine as coordenadas de um ponto A pertencente à mediatriz do segmento de extremos P=(-16/5, 12/5) e Q=(16/5,12/5)

e tal que a distância OA=10.

b)O ponto A é único? Justifique
angelmix
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Out 19, 2011 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Geometria analitica

Mensagempor Arkanus Darondra » Ter Jul 17, 2012 18:26

A equação da reta suporte de \overline{PQ} é:

y - \frac{12}{5} = 0

A mediatriz do segmento passa pelo seu ponto médio e é perpendicular a ele. Assim, sua equação é:

x = 0

Sendo d^2=\Delta x^2 + \Delta y^2, vem:

100 = y^2

Portanto, os pontos serão (0, 10) e (0, -10)
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.