• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] como resolver utilizando L' Hôpital

[Limites] como resolver utilizando L' Hôpital

Mensagempor AboraBR » Qui Jul 12, 2012 15:33

\lim_{\ x\to\infty} \left (\frac {2x-3}{2x+5}\right)^{2x+1}

Resposta: \frac {1}{e^{+8}}

Consegui resolver, porém tive que tirar muitas derivadas para resolver as indeterminações.
AboraBR
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jun 17, 2012 01:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] como resolver utilizando L' Hôpital

Mensagempor e8group » Qui Jul 12, 2012 16:07

Sugestão :

faça \left(\frac{2x-3}{2x+5}\right)^{2x+1} = \left(\frac{2x-3}{2x+5}\right)^{2x}\left(\frac{2x-3}{2x+5}\right) = k

Aplicando logaritmo natural na igualdade ,vem que :


ln(k) =  2x ln\left(\frac{2x-3}{2x+5}\right) + ln\left(\frac{2x-3}{2x+5}\right)

(k) = e^{\left[ 2x ln\left(\frac{2x-3}{2x+5}\right) + ln\left(\frac{2x-3}{2x+5}\right) \right]}

aplicando limite :

\lim_{x\to \infty} (k) =\lim_{x\to \infty } e^{\left[ 2x ln\left(\frac{2x-3}{2x+5}\right) + ln\left(\frac{2x-3}{2x+5}\right) \right]}

Deve conseguir algo aí .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] como resolver utilizando L' Hôpital

Mensagempor e8group » Qui Jul 12, 2012 17:16

santhiago escreveu:Sugestão :

faça \left(\frac{2x-3}{2x+5}\right)^{2x+1} = \left(\frac{2x-3}{2x+5}\right)^{2x}\left(\frac{2x-3}{2x+5}\right) = k

Aplicando logaritmo natural na igualdade ,vem que :


ln(k) =  2x ln\left(\frac{2x-3}{2x+5}\right) + ln\left(\frac{2x-3}{2x+5}\right)

(k) = e^{\left[ 2x ln\left(\frac{2x-3}{2x+5}\right) + ln\left(\frac{2x-3}{2x+5}\right) \right]}

aplicando limite :

\lim_{x\to \infty} (k) =\lim_{x\to \infty } e^{\left[ 2x ln\left(\frac{2x-3}{2x+5}\right) + ln\left(\frac{2x-3}{2x+5}\right) \right]}

Deve conseguir algo aí .



Tive uma ideia melhor ,


\lim_{x\to \infty}\left(\frac{2x-3}{2x+5}\right)^{2x+1}

fazendo : 2x -3 = g ,obtemos :

\lim_{x\to \infty}\left(\frac{2x-3}{2x+5}\right)^{2x+1}  = \lim_{g\to \infty}\left(1+\frac{8}{g}\right)^{-(g +4)}

Fazendo mais uma vez a substituição ,

neste caso , \frac{8}{g} = q ,temos que :

\lim_{x\to \infty}\left(\frac{2x-3}{2x+5}\right)^{2x+1}  = \lim_{g\to \infty}\left(1+\frac{8}{g}\right)^{-(g +4)} = \lim_{q\to 0} \left[(1+q)^{\frac{-8}{q} -4} =  \lim_{q\to 0} \left((1+q)^{\frac{1}{q}} \right)^{-8} (1+q)^{-4} .Pelo limite fundamental temos que :

\lim_{q\to 0} \left((1+q)^{\frac{1}{q}} \right)^{-8} (1+q)^{-4} = e^{-8} 1 = e^{-8} = \frac{1}{e^8} , portanto:

\lim_{x\to \infty}\left(\frac{2x-3}{2x+5}\right)^{2x+1}= \frac{1}{e^8}

OBS.: Perceba que não utilizei derivada , fica a seu critério saber qual desenvolvimento é mais fácil .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59