Pessoal, estou empacado em um exercício e quero muito saber onde estou errando.
Num triângulo ABC, no qual A(2,1), B(0,3) e C(-1,0), toma-se M na reta BC tal que as áreas dos triângulos AMC e AMB ficam na mesma razão 1/4. Calcular as coordenadas de M.
Resp.: M (-4/3,-1) ou M (-4/5,3/5)
Bom, SABC = área do triangulo ABC, SABM = área do triangulo ABM e S AMC = área do triangulo AMC. Primeiramente calculei a área do triângulo ABC e encontrei 4. De acordo com o enunciado, SAMB = 4SAMC. E também SABC = SABM + SAMC => 4 = 5SAMC => SAMC = 4/5 e SABC = 16/5 . Chamando o ponto M de (x,y) eu fiz o determinante do triângulo ABM e encontrei x-3y+1. Sua área é tal que x-3y+1 = 2SAMC. => x-3y+1 = 2(4/5) => x = (3+15y)/5. Analogamente, calculei a área do triângulo AMC tal que x = (-10y -2 )/10. Resolvendo o sistema formado pelas equações 3+15y)/5 e (-10y -2 )/10 eu consigo encontrar os valores de x e de y, mas esses valores encontrados não condizem com a resposta correta. Alguém poderia por favor me dizer onde estou errando? Agradeço mt a quem puder me ajudar. Valeu !



está dentro de um módulo. A imensa maioria das pessoas esquece disso quando aplica essa fórmula!



em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.