por Leu » Sáb Jul 07, 2012 20:40
Obter a equação geral da superfície esférica tangente ao planoJ: x+y-2=0 no ponto P=(0,2,0) e ao plano G: x+z+1. Encontre o ponto de tangência das superfícies com o plano G . Determine as coordenadas do centro e o raio do círculo que se obtém seccionando as superfícies de maior raio com o plano F:2X+Y-Z-7=0.
Oi galera, eu tentei fazer essa questão usando as fórmulas de distâcia, já que a superfície tangencia o plano, logo a distâcia do certro ao plano seria o raio, mas não
deu certo.Se alguém puder resolver essa questão para ver como é, ficarei muito agradecida.
-
Leu
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Jul 07, 2012 20:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia de produção
- Andamento: cursando
por LuizAquino » Seg Jul 09, 2012 14:19
Leu escreveu:Obter a equação geral da superfície esférica tangente ao plano J: x+y-2=0 no ponto P=(0,2,0) e ao plano G: x+z+1. Encontre o ponto de tangência das superfícies com o plano G . Determine as coordenadas do centro e o raio do círculo que se obtém seccionando as superfícies de maior raio com o plano F:2X+Y-Z-7=0.
Oi galera, eu tentei fazer essa questão usando as fórmulas de distâcia, já que a superfície tangencia o plano, logo a distâcia do certro ao plano seria o raio, mas não
deu certo.Se alguém puder resolver essa questão para ver como é, ficarei muito agradecida.
Eu presumo que o plano G seja x + z + 1 = 0. Note que você esqueceu de digitar o " = 0".
Se C é o centro da esfera, então você já deve saber que PC é perpendicular ao plano J, já que P é o ponto de tangência.
Isso significa que C pertence a reta passando por P e que é perpendicular ao plano J. Nesse caso, um vetor diretor para essa reta coincide com o vetor normal desse plano. Sendo assim, as equações paramétricas dessa reta podem ser dadas por:

Como C pertence r, o formato do ponto C deve ser (t, 2 + t, 0), para algum escalar t.
Por outro lado, como a esfera é tangente a J e a G, devemos ter d(C, J) = d(C, G). Usando a fórmula para a distância entre ponto e plano, temos que:


Agora tente continuar a partir daí. Basta resolver essa equação modular. Você irá obter dois valores possíveis para t. Sendo assim, há duas possibilidades para C. Isso significa que há duas esferas que atendem ao problema. Uma delas terá o raio maior do que a outra.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Questão POSCOMP 2011] Ajuda para interpretar questão
por hlustosa » Dom Jul 29, 2012 14:54
- 3 Respostas
- 12994 Exibições
- Última mensagem por hlustosa

Seg Jul 30, 2012 01:13
Funções
-
- Questão de P.A.
por mushthielv » Seg Ago 17, 2009 12:21
- 2 Respostas
- 10976 Exibições
- Última mensagem por Elcioschin

Ter Ago 18, 2009 08:54
Progressões
-
- QUESTÃO
por GABRIELA » Ter Set 08, 2009 16:32
- 2 Respostas
- 15118 Exibições
- Última mensagem por GABRIELA

Ter Set 08, 2009 21:21
Matrizes e Determinantes
-
- Questão da FCC
por wanderlymarques » Qua Nov 18, 2009 12:44
- 2 Respostas
- 5034 Exibições
- Última mensagem por wanderlymarques

Qui Nov 19, 2009 12:58
Cálculo: Limites, Derivadas e Integrais
-
- questão
por sirle ignes » Seg Mar 08, 2010 23:46
- 2 Respostas
- 4803 Exibições
- Última mensagem por sirle ignes

Ter Mar 09, 2010 17:32
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.