• Anúncio Global
    Respostas
    Exibições
    Última mensagem

INTEGRAL TRIPLA uma ajudinha bem rapidinha:)

INTEGRAL TRIPLA uma ajudinha bem rapidinha:)

Mensagempor Garota nerd » Qua Jul 04, 2012 00:16

Olá, gostaria que alguém apenas montasse a integral para o cálculo do seguinte problema:
Calcular o volume do sólido delimitado por x²+y²=4,z=0 e 4x+2y+z=16.
Quem quiser fazer a resposta é 64pi.
É isso que gosto de fazer nas férias mesmo^^
Ficarei muito grata.
Garota nerd
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mai 03, 2011 17:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: INTEGRAL TRIPLA uma ajudinha bem rapidinha:)

Mensagempor Russman » Qua Jul 04, 2012 16:41

A primeira etapa é identificar a simetria do problema. Este, tem simetria cilindrica pois é um cilindro limitado por z=0 e um plano.

Veja que,

V = \int \int \int dV

e que , em coordenadas cilindricas, temos

dV = rdrd\theta dz.

Agora, basta identificar a superfície!

\left\{\begin{matrix}
x^{2}+y^{2}=4 \Rightarrow r=2\\ 
4x+2y+z=16\Rightarrow z=16-2r(2.cos(\theta )-sin(\theta ))\\ 

\end{matrix}\right..

Assim, os limites são:

\left\{\begin{matrix}
0\leq r\leq 2\\ 
0\leq z\leq 16-2r(2.cos(\theta )-sin(\theta ))\\ 
0\leq \theta \leq 2\pi 
\end{matrix}\right..

Tente agora, deve funcionar!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: INTEGRAL TRIPLA uma ajudinha bem rapidinha:)

Mensagempor Garota nerd » Qua Jul 04, 2012 20:50

Consegui! obrigada :)
Garota nerd
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mai 03, 2011 17:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?