por Vitor2+ » Dom Jul 01, 2012 16:27
Olá, Boa Tarde!
Gostaria de um auxílio nesta questão. Necessito saber se tem alguma coisa errada no seu desenvolvimento ou se a respota está correta. Agradeço.
CALCULE, CASO EXISTA, AS DERIVADAS PARCIAIS DA FUNÇÃO

no ponto P(0,1)
DERIVADA EM FUNÇÃO DE X

Substituindo pelos valores do ponto P(0,1), temos:

DERIVADA EM FUNÇÃO DE Y

Substituindo pelos valores do ponto P(0,1), temos:

Sendo assim, a resposta é igual a P(1,0).
-
Vitor2+
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Nov 14, 2011 01:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Dom Jul 01, 2012 17:24
Vitor ,tudo bem ? Até agora só aprendi por conta própria derivadas com uma variável ,mas acredito que estar certo sim ,por derivação implícita orá em relação a x e y eu acho que você estar certo . Mas fica aí a dica ,conhece wolfram alpha ?
se não ! recomendo . localiza-se em
http://www.wolframalpha.com .
Para este caso particular , só digitar d( x*(cos(x/y) +pi) )/d(x) e d( x*(cos(x/y) +pi) )/d(y) e depois só clicar em " show steps" para ver a solução .abraços!
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Dom Jul 01, 2012 18:05
Oops! Falei coisa errada .Não é derivação implícita.Em derivadas parciais as coisas são diferentes .orá derivando em relação a x y é considerado uma constante e derivando em relação a y x é uma constante .
Fonte :
http://pt.wikipedia.org/wiki/Derivada_parcial .
Desconsidere .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Dom Jul 01, 2012 18:42
Vitor sua derivada parcial em relação a x estar correta .
Curiosidade ,Vale lembra também que :
Então :
Mas

se for em radianos . Não entendi porque 0,9984 ....
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Jul 01, 2012 20:42
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Vitor2+ » Dom Jul 01, 2012 23:36
Caro Santhiago, agradeço pela dica. Estou utilizando o site sim, graças a vocês. Tem me ajudado bastante. Porém, gosto de tentar fazer antes de tentar fazer no site. No entanto, sempre fico na neura se a resposta está certa ou não.
Quanto a "

se for em radianos . Não entendi porque 0,9984 ....", quando coloquei na calculadora o

, ele me retornou esse resultado. Também fiquei sem saber, porque o site indicou -1 e não 0,9948, como na calculadora. Agora estou sem saber se o resultado é -1 ou 0,9948.
Danjr5, valeu pela dica e pelo toque do sinal.
Agradeço.
santhiago escreveu:Vitor sua derivada parcial em relação a x estar correta .
Curiosidade ,Vale lembra também que :
Então :
Mas

se for em radianos . Não entendi porque 0,9984 ....
-
Vitor2+
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Nov 14, 2011 01:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Seg Jul 02, 2012 10:56
Vitor2+ escreveu:Agora estou sem saber se o resultado é -1 ou 0,9948.
Vitor ,eu acredito que sua calculadora estar configurada para degrees que neste caso reconhece cos pi ° ? cos 3,14 ° ,para obter cos pi em radianos só configura o mesmo para radians .Mas p/ ângulos analiticamente fáceis recomendo desenha o circulo trigonométrico .abraços !
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- derivada parcial de segunda ordem
por gregorylino » Qui Set 26, 2013 11:39
- 1 Respostas
- 1698 Exibições
- Última mensagem por gregorylino

Qui Set 26, 2013 16:39
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada Parcial de 2ª Ordem] - Resolução de Questão
por Vitor2+ » Sáb Jun 30, 2012 23:04
- 3 Respostas
- 3515 Exibições
- Última mensagem por Vitor2+

Dom Jul 01, 2012 11:47
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] derivada parcial verificação
por Marcelo_ribeiro » Seg Mar 26, 2012 13:57
- 4 Respostas
- 3268 Exibições
- Última mensagem por Marcelo_ribeiro

Ter Mar 27, 2012 02:28
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Definição de derivada num ponto
por fff » Seg Fev 24, 2014 17:12
- 2 Respostas
- 2672 Exibições
- Última mensagem por e8group

Dom Jul 20, 2014 16:14
Cálculo: Limites, Derivadas e Integrais
-
- derivada parcial
por jmario » Dom Abr 18, 2010 11:41
- 0 Respostas
- 1735 Exibições
- Última mensagem por jmario

Dom Abr 18, 2010 11:41
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.