por Luthius » Sex Jul 31, 2009 11:19
Bom dia pessoal, gostaria do passo a passo para encontrar o valor de 'a' no limite abaixo.

Alguém pode me ajudar?
Abraço
Luthius
-
Luthius
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Jul 30, 2009 09:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Molina » Sex Jul 31, 2009 14:38
Luthius escreveu:Bom dia pessoal, gostaria do passo a passo para encontrar o valor de 'a' no limite abaixo.

Alguém pode me ajudar?
Abraço
Luthius
Questão realmente intrigante. Como você já tentou resolve-la?
Eu começaria elevando ambos os lados por
e.
Seria uma saída pra eliminar o ln.
Abraços,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Felipe Schucman » Sex Jul 31, 2009 15:06
Luthius escreveu:Bom dia pessoal, gostaria do passo a passo para encontrar o valor de 'a' no limite abaixo.

Alguém pode me ajudar?
Abraço
Luthius
Bom dia,
Acho que começaria um pouco diferente do molina, tentaria utilizar um limite famoso que é

, tentaria chegar nisso com alguma mudança de incognita talvez, a partir dai resolveria o resto....não sei se da certo assim depois vou tentar!
Um abraço!
-
Felipe Schucman
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Ter Jul 28, 2009 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia e Direito
- Andamento: cursando
por Felipe Schucman » Sex Jul 31, 2009 19:39
Luthius escreveu:Bom dia pessoal, gostaria do passo a passo para encontrar o valor de 'a' no limite abaixo.

Alguém pode me ajudar?
Abraço
Luthius
Ola! Pensei em algo que bnão tenho certeza que é correto mas talvez seja.... no caso

, independente do numero que a for a fração a/x ira tender a aproximadamente o mesmo numero pois x aumente infinitamente fazendo com que a fração tenda a 0...então,
Faria o seguinte,

---->

que é,

---> usando regras de logaritmos, o a cai, e o lne é a mesma coisa que 1, de que a=25....
Não tenho certeza disso, mas é um resolução que tentei....
Se alguém mais entendido de calculo aparecer porfavor aponte algum erro,
Um abraço!
-
Felipe Schucman
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Ter Jul 28, 2009 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia e Direito
- Andamento: cursando
por Molina » Sex Jul 31, 2009 23:34
Felipe Schucman escreveu:Luthius escreveu:Bom dia pessoal, gostaria do passo a passo para encontrar o valor de 'a' no limite abaixo.

Alguém pode me ajudar?
Abraço
Luthius
Ola! Pensei em algo que bnão tenho certeza que é correto mas talvez seja.... no caso

, independente do numero que a for a fração a/x ira tender a aproximadamente o mesmo numero pois x aumente infinitamente fazendo com que a fração tenda a 0...então,
Faria o seguinte,

---->

que é,

---> usando regras de logaritmos, o a cai, e o lne é a mesma coisa que 1, de que a=25....
Não tenho certeza disso, mas é um resolução que tentei....
Se alguém mais entendido de calculo aparecer porfavor aponte algum erro,
Um abraço!
Boa noite.
Acho que é isso mesmo.
Não notei aquele limite fundamental...
Só montando agora em uma única expressão:






Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Molina » Sex Jul 31, 2009 23:36
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Felipe Schucman » Sáb Ago 01, 2009 00:46
Acho que é um definição correta com tanto que aquilo seja mesmo um limite fundamental, o que temos que descobrir é se é um limite fundamental mesmo, talvez substituindo a por 25 e tentando chegar ao resultado saberemos.... tentar aproximar com uma boa calculadora o x a um valor bem alto....
Um abraço!
-
Felipe Schucman
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Ter Jul 28, 2009 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia e Direito
- Andamento: cursando
por Elcioschin » Sáb Ago 01, 2009 11:49
Limite (1 + 1/y)^y = e ----> Limite fundamental
y -->oo
Limite (1 + a/x)^ax = 25 ----> Fazendo a/x = 1/y -----> x = ay ----> x-->oo ----> y-->oo
x -->oo
Limite (1 + 1/y)^a*(ay) = 25
y -->oo
Limite (1 + 1/y)^a²y = 25
y -->oo
[Limite (1 + 1/y)^y]^a² = 25
y-->00
e^a² = 25 ----> (e^a)² = 5² ----> e^a = 5 -----> a = ln5
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Felipe Schucman » Sáb Ago 01, 2009 13:40
Elcioschin escreveu:Limite (1 + 1/y)^y = e ----> Limite fundamental
y -->oo
Limite (1 + a/x)^ax = 25 ----> Fazendo a/x = 1/y -----> x = ay ----> x-->oo ----> y-->oo
x -->oo
Limite (1 + 1/y)^a*(ay) = 25
y -->oo
Limite (1 + 1/y)^a²y = 25
y -->oo
[Limite (1 + 1/y)^y]^a² = 25
y-->00
e^a² = 25 ----> (e^a)² = 5² ----> e^a = 5 -----> a = ln5
Bom Dia Elcioschin,
Realmente acho que essa resolução ta certa, porém a resposta ficaria

----->

-----
Obrigado Elcioschin
Um Abraço!
-
Felipe Schucman
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Ter Jul 28, 2009 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia e Direito
- Andamento: cursando
por Elcioschin » Dom Ago 02, 2009 21:19
Felipe
Eu cometí um engano na última linha, mas a solução é outra:
e^(a²) = 25 -----> Aplicando logaritmo na base e (ln) nos dois membros:
ln[e^(a²)] = ln25 ----> (a²)lne = ln25 ----> a² = ln25 ----> a = [ln25]^(1/2) ----> a = V[ln25]
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Luthius » Seg Ago 03, 2009 10:04
Fiquei em dúvida.
Eu concordo em ser um limite fundamental e a resposta ser 25.
Mas a outra proposição não me deixa certo sobre o resultado.
-
Luthius
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Jul 30, 2009 09:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Elcioschin » Seg Ago 03, 2009 12:17
Felipe
Você está coberto de razão: somente agora eu vi que, na expressão original, existe o ln antes do limite.
Você pode ver que, em toda a minha demonstração, eu calculei APENAS o limite. Complementando:
ln[e^(a²)] = 25 -----> a²*lne = 5² ----> a²*1 = 5² ---> a² = 5² ----> a = +5 ou a = -5
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Luthius » Seg Ago 03, 2009 15:26
Então a resposta seguindo um passo a passo é:

Dado o seguinte limite fundamental de Euler.

Fazendo

em


Substituindo na fórmula:

Substituindo novamente:


Aplicando uma das leis dos logaritmos:

![{a}=\sqrt[]{25} {a}=\sqrt[]{25}](/latexrender/pictures/b25d3a4cbfadd2b4666594f19a707b4f.png)

ou

Obrigado pessoal, pelo grande apoio.
Obs.:Corrigi o erro conforme informado pelo nosso colega.
Editado pela última vez por
Luthius em Ter Ago 04, 2009 08:39, em um total de 2 vezes.
-
Luthius
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Jul 30, 2009 09:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Elcioschin » Seg Ago 03, 2009 19:02
Luthius
Uma pequena correção ----> Fazendo a/x = 1/y
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite Função Exponencial] Qual o valor?
por Ronaldobb » Qui Nov 01, 2012 10:21
- 1 Respostas
- 1669 Exibições
- Última mensagem por young_jedi

Qui Nov 01, 2012 13:51
Cálculo: Limites, Derivadas e Integrais
-
- Qual o valor de K?
por Talvane Ramos » Ter Mar 23, 2010 13:12
- 2 Respostas
- 4333 Exibições
- Última mensagem por joao_pimentel

Qua Dez 14, 2011 20:21
Sistemas de Equações
-
- Qual o valor de (-1)^2/6?
por Abelardo » Ter Abr 12, 2011 23:55
- 28 Respostas
- 14596 Exibições
- Última mensagem por MarceloFantini

Ter Fev 14, 2012 16:26
Álgebra Elementar
-
- Qual é o valor de m
por andersontricordiano » Ter Mai 10, 2011 21:58
- 2 Respostas
- 1853 Exibições
- Última mensagem por DanielRJ

Ter Mai 10, 2011 22:32
Funções
-
- qual é o valor de x na equação:
por aninha1701 » Qui Mar 12, 2009 11:56
- 2 Respostas
- 7163 Exibições
- Última mensagem por Molina

Qui Mar 12, 2009 17:38
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.