• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Otimização - dúvida na construção da função

Otimização - dúvida na construção da função

Mensagempor ramirocalazans » Sex Jun 29, 2012 15:50

Olá, estou com dúvidas nessa questão pois n entendo o q seriam essas margens.
Uma cartolina branca tem uma área de 900cm². Queremos imprimir um texto sobre ela, deixando margens de 3cm na base inferior e nas laterais e uma margem de 5 cm na base superior. Quais as dimensões da cartolina que darão a maior área impressa?
Eu tentei fazer assim:
Considerei que as tais margens estariam nas extremidades da folha e considerei q a área que poderia ser impressa seria essa área do centro. Eu chamei as dimensões da área do centro de x e y então a área da cartolina toda seria: (margem+y+margem)*(margem+x+margem)
Ou seja, 900=(3+y+3)(3+x+5)
900=48+6x+8y+xy então xy=852-6x-8y sendo que xy seria a área que quero maximizar
mas a partir dai, eu não consigo maximizar e por isso acredito que tenha errado no entendimento do problema e na construção da função
Alguém poderia me dar uma ideia ou falar no que estou errando?
ramirocalazans
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jun 29, 2012 15:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia química
Andamento: cursando

Re: Otimização - dúvida na construção da função

Mensagempor Russman » Sex Jun 29, 2012 21:51

Sejam x e y as medidas horizontal e vertical, respectivamente, da folha.Assim, a área total da folha é

xy = 900.

A área a ser impressa é, considerando as margens

A = (y - 5-3)(x-3-3).

Agora, isole uma das medias na 1° equação e aplique na segunda. Logo, derive com relação a variável sobrevivente e calcule, em seguida, qual valor dessa variável que zera a derivada.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Otimização - dúvida na construção da função

Mensagempor ramirocalazans » Sáb Jun 30, 2012 01:28

Muito obrigado, consegui :)
ramirocalazans
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jun 29, 2012 15:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59