• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Piso de um número

Piso de um número

Mensagempor anfran1 » Sex Jun 29, 2012 13:27

Dado um numero real x, o piso \dagger x\dagger de x é definido como o maior número inteiro \dagger x\dagger que é menor ou igual a x.
Por exemplo \dagger 5,2\dagger=5 ; \dagger \pi\dagger=3 ; \dagger 2\dagger=2.
Qual o valor da soma \dagger1\dagger +\dagger\sqrt[2]{2}\dagger + \dagger\sqrt[2]{3}\dagger+...+\dagger\sqrt[2]{200}\dagger?

No começo eu fui somando os valores facilmente mas então percebi que perderia muito tempo já que esta questão caiu nas olímpiadas aqui da minha região. Como faço para resolvê-la?
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Piso de um número

Mensagempor MarceloFantini » Seg Jul 02, 2012 23:49

Perceba que sempre teremos que \lfloor \sqrt{n^2} \rfloor será sempre n até chegarmos em (n+1)^2. Então, por exemplo \lfloor \sqrt{16} \rfloor + \lfloor \sqrt{17} \rfloor + \ldots + \lfloor \sqrt{24} \rfloor = 4 + 4 + \ldots + 4 = 4 \cdot 9 = 36. Tente aplicar o mesmo raciocínio para outros intervalos. Existe uma forma de generalizar para os intervalos, procure.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Piso de um número

Mensagempor anfran1 » Dom Jul 08, 2012 10:52

MarceloFantini escreveu:Perceba que sempre teremos que \lfloor \sqrt{n^2} \rfloor será sempre n até chegarmos em (n+1)^2. Então, por exemplo \lfloor \sqrt{16} \rfloor + \lfloor \sqrt{17} \rfloor + \ldots + \lfloor \sqrt{24} \rfloor = 4 + 4 + \ldots + 4 = 4 \cdot 9 = 36. Tente aplicar o mesmo raciocínio para outros intervalos. Existe uma forma de generalizar para os intervalos, procure.


Já entendi. Por exemplo quando chegarmos ao piso de \sqrt[2]{25} basta irmos somando 5 até chegarmos no piso da \sqrt[2]{36} e assim por diante.
Quanto à generalização tentei fazer por conta própria e percebi que de \sqrt[2]{16} até \sqrt[2]{24} há 9 números(chamemos esse 9 de {x}_{1}).
Entre \sqrt[2]{25} até \sqrt[2]{35} há 11 números (seja 11 = {x}_{2}, então {x}_{2}={x}_{1}+2.
Entre \sqrt[2]{36} até \sqrt[2]{48} há 13 números ({x}_{3}={x}_{2}+ 2). Então minha generalização é a seguinte : {x}_{n}={x}_{n-1}+ 2
Está correto?
anfran1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jun 28, 2012 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.