• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de Monty Hall

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Problema de Monty Hall

Mensagempor Felipe Schucman » Dom Ago 02, 2009 02:28

Bom dia,

O jogo consiste no seguinte: Monty Hall (o apresentador) apresentava 3 portas aos concorrentes, sabendo que atrás de uma delas está um carro (prémio bom) e que as outras têm prêmios de pouco valor.

1)Na 1ª etapa o concorrente escolhe uma porta (que ainda não é aberta);

2)De seguida Monty abre uma das outras duas portas que o concorrente não escolheu, sabendo à partida que o carro não se encontra aí;

3)Agora com duas portas apenas para escolher -- pois uma delas já se viu, na 2ª etapa, que não tinha o prêmio -- e sabendo que o carro está atrás de uma delas, o concorrente tem que se decidir se permanece com a porta que escolheu no início do jogo e abre-a ou se muda para a outra porta que ainda está fechada para então a abrir.

Qual é a estratégia mais lógica? Ficar com a porta escolhida inicialmente ou mudar de porta? Com qual das duas portas ainda fechadas o concorrente tem mais probabilidades de ganhar? Porquê?

Só pra deixar claro, eu lembrei do problema do filme "Quebrando a Banca", depois fui procura-lo....
E ai o que vocês responderiam e porque?!
Antes de procurarem por respostas do problema tente você mesmo explica-lo, é bem legal o pensamento...

Um Abraço!
Felipe Schucman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Ter Jul 28, 2009 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia e Direito
Andamento: cursando

Re: Problema de Monty Hall

Mensagempor Elcioschin » Dom Ago 02, 2009 21:51

Sejam A, B e C as três portas.
Suponha que o concorrente escolheu a porta C.
Tanto o concorrente quanto o apresentador SABEM com certeza que as portas A e B contém PELO MENOS um prêmio de pouco valor, isto é:

a) Se o carro está em C, as portas A e B tem DOIS prêmios de pouco valor.
b) Se na porta C está um prêmio de pouco valor, as portas A e B tem UM prêmio da pouco valor (e 1 carro).

Partindo do princípio que o apresentador sabe ONDE está o carro, ele pode, COM CERTEZA abrir uma das portas A ou B e mostrar um prêmio de pouco valor. Suponha que a porta aberta pelo apresentador seja a B.

Assim, o fato do apresentador mostrar que a porta B possui um prêmio de pouco valor, em nada altera a certeza anterior do concorrente (ele já sabia que uma das portas A ou B tinha um prêmio de pouco valor).

Suponha agora que o apresentador NÃO abra nem a porta A e nem a porta B e ofereça ao concorrente trocar a porta C pelas portas A e B. É óbvio, que, neste caso, seria vantagem para o concorrente trocar: ficando com a porta C a probabilidade de sair o carro é 1/3; ficando com as portas A e B a probabilidade é 2/3.

Ora, como o fato do apresentador abrir a porta B e mostrar um prêmio de pequeno valor não altera em nada o conhecimento do concorrente é SEMPPRE vantagem trocar: a sua chance de ganhar o carro DOBRA.

Para quem ainda tem dúvida faça um teste em casa com 3 cartas de baralho: 2 pretas e 1 vermelha (carro).
Peça a um amigo para colocar as 3 cartas sobre uma mesa com as faces viradas para baixo.
O amigo sabe qual delas é a vermelha e você não sabe.
Em seguida você escolhe 1 delas.
Aí o seu amigo vira AS OUTRAS DUAS
Se uma destas duas for vermelha você teria ganho o carro TROCANDO a sua escolhida pelas duas que o amigo virou.
Faça esta experiência MUITAS vezes (N vezes).
Conde depois QUANTAS vezes a carta vermelha era 1 das duas viradas (x vezes)

P = x/N ----> Quanto maior o valor de N mais P se aproximará de 2/3 (66,6%) provando que SEMPRE é vantagem trocar.

Conte depois no forum se sua experiência deu certo!!!
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Problema de Monty Hall

Mensagempor Molina » Dom Ago 02, 2009 22:20

Boa noite.

Problema bem curioso. Já fiz um mini-trabalho na faculdade sobre ele. Também conhecido como a Porta dos Desesperados. Pra quem não conseguiu assimilar como que funciona é identico a uam brincadeira no programa do Sergio Malandro onde saía monstros de dentro das portas.

Está em anexo a minha explicação, :D

:y:
Anexos

[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]

Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D