por Lucas Monteiro » Seg Jun 25, 2012 18:49
Suponha que devido às condições de relevo de um terreno onde se deseja construir um galpão retangular, o custo de cada metro linear de duas paredes paralelas seja R$ 50,00, enquanto que cada metro linear das outras paredes pode ser construído por apenas R$ 27,00. Se o galpão a ser construído deve ter 600m² de área, calcule as dimensões que minimizam o custo da construção das paredes.
-
Lucas Monteiro
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Jun 25, 2012 18:40
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Ter Jun 26, 2012 12:13
Lucas Monteiro escreveu:Suponha que devido às condições de relevo de um terreno onde se deseja construir um galpão retangular, o custo de cada metro linear de duas paredes paralelas seja R$ 50,00, enquanto que cada metro linear das outras paredes pode ser construído por apenas R$ 27,00. Se o galpão a ser construído deve ter 600m² de área, calcule as dimensões que minimizam o custo da construção das paredes.
Suponha que x seja a medida (em metros) de cada parede que custa R$ 50,00 o metro. Como a área deve ser de 600 m², temos que as outras duas paredes devem medir 600/x cada uma.
Nesse contexto, o custo da construção será dado pela função:

Agora tente concluir o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Lucas Monteiro » Ter Jun 26, 2012 17:14
Valeu Professor, consegui resolver! Obrigado.
-
Lucas Monteiro
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Jun 25, 2012 18:40
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Otimização de derivadas
por bilsilva » Sáb Ago 14, 2010 17:52
- 1 Respostas
- 2352 Exibições
- Última mensagem por Douglasm

Dom Ago 15, 2010 22:35
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Uso de otimização
por mikari » Dom Nov 09, 2014 20:01
- 0 Respostas
- 2114 Exibições
- Última mensagem por mikari

Dom Nov 09, 2014 20:01
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas - Otimização
por RafaF2104 » Dom Mar 05, 2017 18:01
- 0 Respostas
- 3068 Exibições
- Última mensagem por RafaF2104

Dom Mar 05, 2017 18:01
Cálculo: Limites, Derivadas e Integrais
-
- [otimização] DERIVADAS PARCIAIS
por montanha » Seg Ago 04, 2008 10:18
- 5 Respostas
- 12914 Exibições
- Última mensagem por admin

Sex Ago 08, 2008 15:14
Cálculo: Limites, Derivadas e Integrais
-
- Problema de otimização - Derivadas
por Napiresilva » Seg Out 10, 2016 15:21
- 1 Respostas
- 3107 Exibições
- Última mensagem por adauto martins

Qui Out 13, 2016 17:07
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.