• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra Linear e Geometria

Álgebra Linear e Geometria

Mensagempor JessicaHayanne » Qua Jun 20, 2012 13:20

Boa tarde..
Alguem poderia me auxiliar.. *-*
tenho um trabalho envolvendo as duas disciplinas, tenho que fazer a 'plotagem' de uma elipse no winplot onde ocorra uma expansão (ou contração) da mesma, porém para isso necessito encontrar a matriz de transformação linear de expansão ( ou contração)..
Já obti a paramétrica dela que é:

E :  x = xo+acos(t)
y = yo+bsin(t)


Sei que preciso dela .. porém nao sei como aplica-la na transformação! "/
Alguem que ja tenha feito ou saiba Por Favor me ajude preciso com extrema importância e urgência..
Grata desde ja'
JessicaHayanne
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jun 20, 2012 13:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Álgebra Linear e Geometria

Mensagempor LuizAquino » Dom Jun 24, 2012 08:37

JessicaHayanne escreveu:Boa tarde..
Alguem poderia me auxiliar.. *-*
tenho um trabalho envolvendo as duas disciplinas, tenho que fazer a 'plotagem' de uma elipse no winplot onde ocorra uma expansão (ou contração) da mesma, porém para isso necessito encontrar a matriz de transformação linear de expansão ( ou contração)..
Já obti a paramétrica dela que é:

E : x = xo+acos(t)
y = yo+bsin(t)


Sei que preciso dela .. porém nao sei como aplica-la na transformação! "/
Alguem que ja tenha feito ou saiba Por Favor me ajude preciso com extrema importância e urgência..


A matriz da transformação é dada por:

T = \begin{bmatrix}
k & 0 \\
0 & m
\end{bmatrix}

Se k > 1, então temos uma expansão na direção do eixo x. Mas se 0 < k < 1, então temos uma contração na direção do eixo x.

Se m > 1, então temos uma expansão na direção do eixo y. Mas se 0 < m < 1, então temos uma contração na direção do eixo y.

Se você usar k = m, então ocorrerá ao mesmo tempo uma expansão ou uma contração em ambas as direções.

Os pontos (x, y) da elipse resultante ao aplicar essa transformação serão dados por:

\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
k & 0 \\
0 & m
\end{bmatrix}
\begin{bmatrix}
x_0 + at \\
y_0 + bt
\end{bmatrix}

Observação

Para plotar os gráficos eu recomendo o GeoGebra.

Se você desejar um tutorial sobre esse programa, então eu gostaria de recomendar os vídeos que estão disponíveis no meu canal no YouTube:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}