por matematicouff » Qui Jun 21, 2012 17:12
Alguém pode me ajudar a resolver esse limite?

-
matematicouff
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Abr 29, 2012 15:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Russman » Qui Jun 21, 2012 17:22
http://www.wolframalpha.com/input/?i=li ... +x+%3D+infAli onde aparece a resposta clique em "Show Steps". Você encontrará a solução passo a passo.
Vale a pena conferir. (:
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Regra de l'Hopital
por Claudin » Seg Mai 16, 2011 16:05
- 15 Respostas
- 10944 Exibições
- Última mensagem por deangelo

Sex Jun 10, 2011 15:23
Cálculo: Limites, Derivadas e Integrais
-
- [Regra de L'Hôpital] Ajuda
por Ronaldobb » Ter Nov 06, 2012 21:43
- 2 Respostas
- 1665 Exibições
- Última mensagem por MarceloFantini

Ter Nov 06, 2012 23:41
Cálculo: Limites, Derivadas e Integrais
-
- [Dúvida] Regra de L'hôpital
por Borracha22 » Ter Mai 28, 2013 18:38
- 2 Respostas
- 3710 Exibições
- Última mensagem por Man Utd

Ter Mai 28, 2013 23:11
Cálculo: Limites, Derivadas e Integrais
-
- [Regra de L'Hôpital]me ajudem nesse exercício.
por marcosmuscul » Sáb Abr 13, 2013 14:07
- 1 Respostas
- 1509 Exibições
- Última mensagem por e8group

Sáb Abr 13, 2013 14:41
Cálculo: Limites, Derivadas e Integrais
-
- L'Hôpital!
por talitaerika » Sex Mai 28, 2010 20:42
- 1 Respostas
- 1361 Exibições
- Última mensagem por Molina

Sex Mai 28, 2010 21:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.