por citadp » Qua Jun 20, 2012 09:49
Tenho uma função x^6+3x^5 = -1
Pedem-me, mostre que a equação tem uma raiz em ]-1, 0 [
Ora, o que eu costumo fazer é derivar, o que me dá 6x^5+ 15x^4
Como não consigo calcular assim os zeros, simplifiquei : x^3(x^2 + 15x) = 0 o que me dá um zero em x=-15, o que supostamente me ensinaram foi que se a derivada não tiver zeros existe apenas um zero na função.
Assim a derivada tem zeros.
Alguém me pode ajudar a resolver isto ?
-
citadp
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Jun 02, 2012 13:11
- Formação Escolar: SUPLETIVO
- Área/Curso: Informática
- Andamento: cursando
por e8group » Qua Jun 20, 2012 10:57
i) Teorema do valor intermediário :
OBS.: Note que

não é uma função ,é uma equação polinomial .
Mas seja uma função

,definida por

.
Como

é contínua (polinômio ) ,

e

.
Como
![0 \in [ f(-1) ,f(0) ] = [ -1 ,1] 0 \in [ f(-1) ,f(0) ] = [ -1 ,1]](/latexrender/pictures/0feeb01495db72a6a828db9dfa53eeb7.png)
, pelo TVI existe um

tal que

-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por citadp » Qua Jun 20, 2012 11:24
Obrigada, já agora se fosse para igualar a zero, como calculava ?
Eu sei que existe a regra de ruffini, mas nunca sei qual o número que fica a multiplicar nestes casos.
-
citadp
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Jun 02, 2012 13:11
- Formação Escolar: SUPLETIVO
- Área/Curso: Informática
- Andamento: cursando
por e8group » Qua Jun 20, 2012 11:38
citadp escreveu:Eu sei que existe a regra de ruffini, mas nunca sei qual o número que fica a multiplicar nestes casos.
Você pode utilizar o método de newton para aproximar raízes ,veja :
http://en.wikipedia.org/wiki/Newton%27s_method .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por citadp » Qua Jun 20, 2012 11:54
Outra questão, este exercicio diz também prove que a equação dada tem exactamente duas raízes reais.
Ora sem intervalo como provo isso ?
O que normalmente faria era derivar, calcular os zeros da derivada.
Após isso verificar se os zeros da derivada era zeros da função original e calcular também os zeros da função original num intervalo.
-
citadp
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Jun 02, 2012 13:11
- Formação Escolar: SUPLETIVO
- Área/Curso: Informática
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida - Raízes
por hugo82 » Ter Mai 31, 2011 19:29
- 1 Respostas
- 969 Exibições
- Última mensagem por Molina

Ter Mai 31, 2011 19:44
Álgebra Elementar
-
- Raízes dúvida
por LuizCarlos » Dom Mai 06, 2012 12:40
- 3 Respostas
- 1571 Exibições
- Última mensagem por DanielFerreira

Ter Mai 08, 2012 22:29
Álgebra Elementar
-
- [Função modular] Dúvida com relação a raízes
por exburro » Sáb Mar 31, 2012 01:23
- 1 Respostas
- 2421 Exibições
- Última mensagem por LuizAquino

Sex Abr 06, 2012 12:40
Funções
-
- Dúvida em exercício - raízes de função quadrática
por Danilo » Qui Jun 07, 2012 01:50
- 1 Respostas
- 3051 Exibições
- Última mensagem por Russman

Qui Jun 07, 2012 03:32
Funções
-
- [DÚVIDA] Potências de expoentes racionais e raízes.
por invader_zim » Ter Fev 12, 2013 11:31
- 3 Respostas
- 2168 Exibições
- Última mensagem por DanielFerreira

Ter Fev 12, 2013 12:24
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.