por Russman » Qua Jun 20, 2012 01:43
Bom, a sua reta é da forma

, onde

é uma constante positiva.
Como a reta passa pelo ponto

, então sabemos que

.
Agora você precisa calular o comprimento da hipotenusa do triângulo

. Este será a distancia entre os pontos

e

, tal que

e

. Assim,

.
Como sabemos que

e

se relacionam por

então podemos substituir

na equação acima e teremos

, ou seja, a hipotenusa do triângulo unicamente como função de

.

.
Agora, para minimizar (ou maximizar)

você precisa calcular que valor de

que zera a sua derivada com relação a

.

.
Para que

precisamos que

A solução

não é válida pois de

chegamos em

oque é um absurdo, pois por hipótese

.
Então vamos analisar a outra equação para calcular suas raízes. A sua única raíz real é

. Portanto, as dimensôes do triângulo são

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Jhonata » Qua Jun 20, 2012 02:02
Nossa, eu nunca iria pensar nisso... Por isso não chegava em lugar algum. A resposta está corretíssima. De fato, a questão foi muito bem elaborada...
Muito obrigado!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por Russman » Qua Jun 20, 2012 02:06
É, questão muito bem elaborada!
Fico feliz em ajudar. (:
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.