por ricardosanto » Seg Jun 18, 2012 20:10
Não estou conseguindo colcular esse limite:
[tex]\lim_{h->0} [f(x0+h)- f(x0)]/h
da funcão: F(x)= 1/(2x)
isto tem que dar 1/2x² ?
que é a derivada.
eu estou errando bastante...

axo q agora está correto.
obrigado pela resposta.
obs. este editor de fórmulas está com problemas
Editado pela última vez por
ricardosanto em Ter Jun 19, 2012 00:03, em um total de 2 vezes.
-
ricardosanto
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Seg Abr 16, 2012 12:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: cursando
por MarceloFantini » Seg Jun 18, 2012 23:27
Seu limite está incorreto. Procure colocar na forma como disse.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por ricardosanto » Ter Jun 19, 2012 02:30
corrigido
-
ricardosanto
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Seg Abr 16, 2012 12:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: cursando
por MarceloFantini » Ter Jun 19, 2012 02:46
A função é

. Então

. Segue

.
Simplificando o numerador, temos

.
Voltando ao limite,

.
Note o que eu fiz: primeiro, definimos todos os termos do limite, depois colocamos dentro do limite. Em seguida, eu apenas trabalhei com as frações do numerador para ver o que poderíamos encontrar, voltamos à expressão, simplificamos e por fim aplicamos o limite.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por ricardosanto » Ter Jun 19, 2012 03:48
estou com dificuldade de captara a seguinte parte: sei q divisão de frações, multiplia uma pelo inverso da outre. mas o -h(ou melhor, o menos) veio de onde?
obrigado
-
ricardosanto
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Seg Abr 16, 2012 12:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Calcular esse limite
por ViniciusAlmeida » Sáb Abr 18, 2015 08:45
- 1 Respostas
- 1800 Exibições
- Última mensagem por adauto martins

Qui Mai 07, 2015 13:02
Cálculo: Limites, Derivadas e Integrais
-
- CALCULAR LIMITE
por Michelee » Dom Mai 01, 2011 12:04
- 3 Respostas
- 2958 Exibições
- Última mensagem por LuizAquino

Dom Mai 01, 2011 19:01
Cálculo: Limites, Derivadas e Integrais
-
- Calcular limite
por LAZAROTTI » Ter Mai 01, 2012 13:56
- 1 Respostas
- 1267 Exibições
- Última mensagem por LuizAquino

Ter Mai 01, 2012 14:55
Cálculo: Limites, Derivadas e Integrais
-
- Calcular o limite de
por nowfeer » Seg Jun 18, 2012 01:22
- 2 Respostas
- 1726 Exibições
- Última mensagem por nowfeer

Ter Jun 19, 2012 21:36
Cálculo: Limites, Derivadas e Integrais
-
- Calcular o limite de
por RodrigoMan » Ter Jun 26, 2012 15:09
- 1 Respostas
- 1255 Exibições
- Última mensagem por e8group

Ter Jun 26, 2012 17:08
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.