por Higor Yuri » Seg Jun 18, 2012 12:33
Consigo achar a equação do plano qndo tenho um ponto e tudo, mas nessa questão me pede pra encontrar os pontos da esfera que é paralalelo a outro plano
Determine os pontos da esfera x²+y²+z²=1 onde o plano tangente é paralelo ao plano 2x + y - 3z = 2
por favor me ajudem
grato
-
Higor Yuri
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Jun 18, 2012 12:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por LuizAquino » Ter Jun 19, 2012 11:47
Higor Yuri escreveu:Consigo achar a equação do plano qndo tenho um ponto e tudo, mas nessa questão me pede pra encontrar os pontos da esfera que é paralalelo a outro plano
Determine os pontos da esfera x²+y²+z²=1 onde o plano tangente é paralelo ao plano 2x + y - 3z = 2
Dos conhecimentos de Geometria Analítica, sabemos que dois planos são paralelos quando seus vetores normais possuem a mesma direção (ou seja, os vetores normais são paralelos).
Sabemos que o vetor normal a esfera no ponto

será dado por

, onde

.
Caculando o gradiente, temos que

.
Por outro lado, um vetor normal do plano 2x + y - 3z = 2 será dado por

.
Para que os vetores

e

possuam a mesma direção, deve existir um escalar
k tal que

. De onde concluímos que:

Substituindo essa informação na equação da esfera, temos que:

Agora tente concluir o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação do Plano Tangente - Plano Paralalelo]
por raimundoocjr » Qui Out 24, 2013 22:10
- 0 Respostas
- 2693 Exibições
- Última mensagem por raimundoocjr

Qui Out 24, 2013 22:10
Cálculo: Limites, Derivadas e Integrais
-
- PLANO TANGENTE
por renan_cpime14 » Sáb Out 12, 2013 14:49
- 0 Respostas
- 954 Exibições
- Última mensagem por renan_cpime14

Sáb Out 12, 2013 14:49
Cálculo: Limites, Derivadas e Integrais
-
- Plano tangente
por carolzinhag3 » Seg Abr 10, 2017 23:11
- 2 Respostas
- 2384 Exibições
- Última mensagem por carolzinhag3

Sex Abr 14, 2017 23:46
Cálculo: Limites, Derivadas e Integrais
-
- Equacao plano tangente
por Flames » Ter Mar 13, 2012 00:10
- 4 Respostas
- 2554 Exibições
- Última mensagem por Flames

Ter Mar 13, 2012 23:15
Cálculo: Limites, Derivadas e Integrais
-
- Superfície e Plano Tangente- URGENTE
por leroaquino » Qui Set 17, 2015 19:46
- 2 Respostas
- 2129 Exibições
- Última mensagem por leroaquino

Seg Set 21, 2015 16:10
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.