• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dúvida perpendicularismo

dúvida perpendicularismo

Mensagempor Danilo » Dom Jun 17, 2012 19:14

Empacado em mais um exercício...

O ponto P (3,3) é o centro de um feixe de retas no plano cartesiano . Determine as equações das retas desses feixe, perpendiculares entre si, que interceptam o eixo Ox nos pontos A e B, e tais que a distância entre eles seja 15/2.

Bom, primeiro eu pensei que se as duas retas fazem parte de um feixe de retas, então as duas retas vão concorrer no ponto P (3,3). Se elas são perpendiculares entre si, um dos angulos é 90º e os outros 2 são 45º (que são os angulos formados com o eixo x). Logo, penso que não seja necessário saber que a distancia seja 15/2 já que tenho o coeficiente angular de cada uma. Encontrei y+x =0 o que não condiz... a resposta. Queria saber qual foi o meu erro nesse raciocínio. Tentei de uma segunda maneira: Chamei o ponto A de (a,0), e o ponto B de (b,0). Utilizando a fórmula da distância para calcular a distância entre A e B e igualando a 15/2 eu encontrei uma relação tal que a = 15/2 +b. Aí eu fiz o determinante com os pontos A e o ponto P para encontrar a equação da reta relativa a ao ponto A. Encontrei a equação 6x + y(9+2b) - 45 -6b = 0. Penso que o coeficiente angular será 1 ou - 1 aí eu fiz -6/9+2b para as duas possibilidades, mas ainda assim não dá certo. Qual o meu erro? Grato desde já !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: dúvida perpendicularismo

Mensagempor e8group » Dom Jun 17, 2012 22:20

boa noite Danilo ,Veja uma visão geométrica abaixo deste exercício e tente conclui-lo a parti do mesmo .

retas.png
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: dúvida perpendicularismo

Mensagempor Danilo » Dom Jun 17, 2012 22:25

santhiago escreveu:boa noite Danilo ,Veja uma visão geométrica abaixo deste exercício e tente conclui-lo a parti do mesmo .

retas.png


Boa noite ! Então, eu pensei exatamente assim... o coeficiente das retas será 1 e - 1, mas eu não consigo aplicar a informação de forma que eu consiga encontrar a resposta correta... vlw
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: dúvida perpendicularismo

Mensagempor e8group » Seg Jun 18, 2012 17:31

Boa tarde ,Danilo  .

Seja r e s retas perpendiculares entre si ,onde P pertence ambas retas .

Assim ,

r: y= \ a_1 x +\ b_1 .

s: y= - (\ a_1)^{-1}  x +b_2 .

Mas como A=(\ x_1 ,0) , B = (\ x_2 ,0) ,temos que :

r : 0 = \ a_1 \ x_1 + \ b_1

s : 0 = - (\ a_1)^{-1}  \ x_2 +\ b_2 .

Lembrando que P pertence ambas retas ,ou seja :

3a +\ b_2 = - 3 (a)^{-1} +\ b_1 . Portanto ,

r: y = 2x -3

s: y = - \frac{1}{2}x + \frac{9}{2}





retas2.png
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: dúvida perpendicularismo

Mensagempor Danilo » Qua Jun 20, 2012 01:23

santhiago escreveu:Boa tarde ,Danilo  .

Seja r e s retas perpendiculares entre si ,onde P pertence ambas retas .

Assim ,

r: y= \ a_1 x +\ b_1 .

s: y= - (\ a_1)^{-1}  x +b_2 .

Mas como A=(\ x_1 ,0) , B = (\ x_2 ,0) ,temos que :

r : 0 = \ a_1 \ x_1 + \ b_1

s : 0 = - (\ a_1)^{-1}  \ x_2 +\ b_2 .

Lembrando que P pertence ambas retas ,ou seja :

3a +\ b_2 = - 3 (a)^{-1} +\ b_1 . Portanto ,

r: y = 2x -3

s: y = - \frac{1}{2}x + \frac{9}{2}





retas2.png



Obrigado ;)
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: