• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida Urgente!

Duvida Urgente!

Mensagempor RJCT » Qua Jun 13, 2012 18:50

Boa noite preciso de ajuda nesta demostração, nao sei se devo resolver as derivadas parciais cruzadas ou se existe uma forma mais simples...

Dado f(x,y) = xy(\frac{x^2-y^2}{x^2+y^2}) se (x,y)\neq (0,0) e f(0,0)= 0, mostre que \frac{d^2f}{dxdy}(0,0)\neq \frac{d^2f}{dydx}(0,0)

Gostaria que alguém me desse uma ideia de como pegar nisto..
RJCT
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jun 13, 2012 18:47
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Engenharia
Andamento: cursando

Re: Duvida Urgente!

Mensagempor LuizAquino » Sex Jun 15, 2012 16:52

RJCT escreveu:Boa noite preciso de ajuda nesta demostração, nao sei se devo resolver as derivadas parciais cruzadas ou se existe uma forma mais simples...

Dado f(x,y) = xy(\frac{x^2-y^2}{x^2+y^2}) se (x,y)\neq (0,0) e f(0,0)= 0, mostre que \frac{d^2f}{dxdy}(0,0)\neq \frac{d^2f}{dydx}(0,0)

Gostaria que alguém me desse uma ideia de como pegar nisto..


Eu vou mostrar como calcular \frac{\partial^2 f}{\partial x \partial y} (0,\,0) e você tenta calcular \frac{\partial^2 f}{\partial y \partial x} (0,\,0) .

Aplicando a definição de derivada, temos que:

\frac{\partial^2 f}{\partial x \partial y} (0,\,0) = f_{xy}(0,\,0) = \lim_{h\to 0} \frac{f_x(0,\,0+h)-f_x(0,\,0)}{h}

Precisamos então calcular f_x(0,\,h) (com h\neq 0) e f_x(0,\,0) .

Calculando f_x(0,\,h), temos que:

f_x(0,\,h) = \lim_{u\to 0} \frac{f(0+u,\,h) - f(0,\,h)}{u}

f_x(0,\,h) = \lim_{u\to 0} \frac{uh\frac{u^2 - h^2}{u^2 + h^2} - 0}{u}

f_x(0,\,h) = \lim_{u\to 0} h\frac{u^2 - h^2}{u^2 + h^2}

f_x(0,\,h) = -h

Calculando f_x(0,\,0), temos que:

f_x(0,\,0) = \lim_{u\to 0} \frac{f(0+u,\,0) - f(0,\,0)}{u}

f_x(0,\,0) = \lim_{u\to 0} \frac{0 - 0}{u}

f_x(0,\,0) = 0

Voltando para o cálculo de \frac{\partial^2 f}{\partial x \partial y}, temos que:

\frac{\partial^2 f}{\partial x \partial y} (0,\,0) = \lim_{h\to 0} \frac{-h - 0}{h}

\frac{\partial^2 f}{\partial x \partial y} (0,\,0) = -1

Agora use a definição de derivada para calcular \frac{\partial^2 f}{\partial y \partial x} (0,\,0) . Você irá encontrar que \frac{\partial^2 f}{\partial y \partial x} (0,\,0) = 1 . Portanto, poderá concluir que \frac{\partial^2 f}{\partial x \partial y} (0,\,0) \neq \frac{\partial^2 f}{\partial y \partial x} (0,\,0) .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.