• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação do 2º grau] equações fracionárias

[Equação do 2º grau] equações fracionárias

Mensagempor smlspirit » Sex Jun 15, 2012 01:42

Não consigo desenvolver o seguinte problema:
Dividindo um número de dois algarismo, cuja soma é 9, pelo quociente da divisão do algarismo das unidades pelo algarismo das dezenas, obtém-se o quociente 18. Qual é esse número?
Gostaria de uma ajuda para compreender o problema e montar a equação.
Obrigado
smlspirit
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mai 18, 2012 01:00
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: formado

Re: [Equação do 2º grau] equações fracionárias

Mensagempor Russman » Sex Jun 15, 2012 04:33

smlspirit escreveu:Não consigo desenvolver o seguinte problema:
Dividindo um número de dois algarismo, cuja soma é 9, pelo quociente da divisão do algarismo das unidades pelo algarismo das dezenas, obtém-se o quociente 18. Qual é esse número?
Gostaria de uma ajuda para compreender o problema e montar a equação.
Obrigado


Seja esse número x. Como ele tem apenas dois algarismos, sejam eles a e b, podemos escrever que x=10a+b. Concorda?

Assim, vamos ao enunciado! Ele nos dá duas informações:

\left\{\begin{matrix}
\frac{10a+b}{(\frac{b}{a})}=18 \\ 
a+b=9
\end{matrix}\right.

Eu acho interessante fato de que se a soma dos algarismos de um número é 9 então este é múltiplo de 9. Veja que isto nos dá apenas algumas combinações específicas para (a,b). Assim, podíamos fazer tentativas e verificar qual par satisfaz a equação 1. Maaaaaas, vamos recorrer a boa e confiável álgebra.

Da equação 1, podemos desenvolver que

\frac{10a+b}{(\frac{b}{a})}=18\Rightarrow 10a + b = \frac{18b}{a} \Rightarrow 10a^{2}+ab = 18b\Rightarrow 10a^{2}+b(a-18)=0.

Pela equação 2 sabemos que a e b se relacionam seguindo a+b=9. Portanto, se tomarmos b=9-a e substituirmos na equação acima teremos uma equação de 2° grau na incógnita a!

10a^{2}+b(a-18)=0\Rightarrow 10a^{2}+(9-a)(a-18)=0\Rightarrow 10a^{2}-162+27a-a^{2}=0\Rightarrow 9a^{2}+27a-162=0\Rightarrow \left\{\begin{matrix}
a_{1}=3\\ 
a_{2}=-6
\end{matrix}\right.

Como a deve ser um algarismo, a única solução válida é a=3. Agora, como eu sei que 4\times9=36 é fácil imaginar que b=6, pelo argumento que eu dei acima. Claro, b=9-a=9-3=6.

Portanto, o seu número é 36!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59